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Abstract— This paper proposes two new metrics to evaluate
learned object detection models that can be leveraged for quan-
titative system-level analysis via probabilistic model-checking.
We define proposition-labeled and distance-parametrized confu-
sion matrices and show that these matrices can be used to
compute the probability of the closed-loop system satisfying its
system-level specifications expressed in temporal logic. Instead
of using object class labels, the proposition-labeled confusion
matrix uses atomic propositions relevant to the high-level
planning strategy. Furthermore, unlike the traditional confusion
matrix, the proposed distance-parametrized confusion matrix
accounts for variations in detection performance with respect
to the distance between the ego and the object. We empirically
show that these evaluation metrics chosen with the context
of i) system-level specifications and ii) the planning module
lead to a less conservative analysis in comparison to canonical
metrics that do not take these into account. We demonstrate
this framework on a car-pedestrian example by computing the
satisfaction probabilities for safety requirements formalized in
Linear Temporal Logic (LTL).

I. INTRODUCTION

Formal verification is an important technique to ensure
the correctness of safety-critical autonomous systems. How-
ever, when verifying learning-based components such as
perception, two challenges arise: i) correctly specifying the
formal requirements to be verified, and ii) verification of
the component. In this paper, we evaluate learning-based
object detection and classification models with respect to
system-level safety requirements encoded in Linear Temporal
Logic (LTL). Inspired by the use of confusion matrices in
machine learning and computer vision [1]–[4], we define
two new evaluation metrics for object detection. We provide
a framework for coupling these metrics with planning and
control to provide a quantitative metric of safety at the overall
system-level.

In a typical autonomy software stack, the perception com-
ponent is responsible for parsing sensor inputs to perform
tasks such as object detection and classification, localiza-
tion, and tracking, and the planning module is responsi-
ble for mission planning, behavior planning, and motion
planning [5]. Further downstream in the autonomy stack,
we have controllers to actuate the system to execute plans
consistent with the planning module. For high-level, discrete
decision-making tasks in robotics, using formal methods to
specify requirements, synthesize controllers, and verify sys-
tem models has been an effective paradigm [6]–[10]. Some
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Fig. 1: Planning and control can be evaluated using temporal logic.
However, this analysis often excludes perception performance.
Based on confusion matrices from computer vision, we propose new
metrics for object detection, and outline a framework for accounting
for perception performance in evaluating the overall system.

of this success can be attributed to the ease of specifying
safety, progress, and fairness properties at the system-level
[11]–[16]. For instance, it is feasible to formally specify
“maintain safe longitudinal distance” as a safety property
for a self-driving car [14], [16]. However, using the same
paradigm to evaluate perception can be challenging since
it is difficult to formally characterize “correct” performance
(relative to human-level perception) for perception tasks such
as object detection [17]. Consider the task of classifying
handwritten digits in the MNIST dataset [18] — it is not
practical to formally specify the pixel configuration to cor-
rectly classify a digit. Similarly, for urban driving scenarios,
it becomes impractical to specify formal requirements for
object detection, and subsequently verify learned detection
models. In computer vision, object detection models are
evaluated using metrics such as accuracy, precision and
recall [1], [19]. Several of these metrics are derived from
the confusion matrix, which is obtained from the detection
model’s performance on an evaluation set [1], [19]. The work
in [20], [21] shows that confusion matrices can be leveraged
to account for object detection performance in a quantitative
evaluation of the overall system with respect to system-level
formal requirements.

However, confusion matrices, as traditionally studied in
computer vision, are often constructed assuming detection
performance on all datapoints is of equal importance. In a
system-level analysis, this would not necessarily highlight
detection errors that are safety-critical. For example, consider
a cluster of pedestrians waiting at a crosswalk and an
autonomous car with the requirement to come to a safe



stop. If detecting one pedestrian vs. a group of pedestrians
results in the same planning outcome of the car coming to
a stop, then accounting for every missed pedestrian in the
quantitative analysis would not accurately reflect the actual
probability that the car behaves safely. Therefore, we argue
that metrics for evaluating object detection models must
be carefully chosen depending on the downstream planning
logic and the system-level safety specifications. Note that this
still allows for the design and evaluation of the detection
module to be independent from the rest of the autonomy
stack — only the choice of metrics is informed by the
system-level specification and the decision-making module.

Given this context, our contributions are the following. We
focus on the object detection task of perception, and use it
to refer to both the tasks of detecting an object and correctly
classifying it. First, we propose a distance-parametrized vari-
ation of the traditional confusion matrix to account for the
effect of distance on object detection performance. Second,
we define a proposition-labeled confusion matrix. Third, we
use the proposed metrics to evaluate a pre-trained YoLov3
model [22] on the NuScenes [23] dataset. The probability
that the overall system satisfies its specifications is then
computed using probabilistic model checking via methods
introduced in prior work [20], [21], [24]. Finally, we provide
an empirical comparison of the quantitative analysis resulting
from the different metrics for object detection on a car-
pedestrian example. We show that the detection metrics that
are distance-parametrized and proposition-labeled lead to
less conservative outcomes in the system-level evaluation.

II. RELATED WORK

Evaluating and monitoring perception for safety-critical
errors is an emerging research topic [14], [25], [26]. Per-
ception is a complex subsystem responsible for tasks such
as detection, localization, segmentation. These recent works
have focused on evaluating object detection in the context
of system-level safety. We follow this early work and focus
on object detection task of perception, which refers to both
detecting an object and classifying it correctly. As an initial
stage of this study, we assume a static environment and
perfect object localization. These assumptions can potentially
be relaxed based on an analysis that takes into account
partial observability of the environment [27], as discussed
in Section VI.

The use of Markov chains for probabilistic reasoning about
the correctness of high-level robot behaviors in the presence
of perception errors was studied in [24]. However, the
algorithms in [24] assumed knowledge of the probabilistic
sensor model. Rigorously constructing these sensor models
from confusion matrices was presented in [20]. In [21],
this approach was further extended by providing confidence
intervals on the probabilistic sensor models and was applied
to a case study on guiding aircraft on taxiways introduced
by Boeing [28].

For runtime monitoring of perception systems, Timed
Quality Temporal Logic (TQTL) is used to specify spatio-
temporal requirements on perception [29], [30] . However,

to specify these requirements, the user has to label each
scenario with critical objects that need to be detected. This
approach is useful in evaluating perception in isolation with
respect to the requirements defined on a specific scenario.
In [26], temporal diagnostic graphs are proposed to identify
failures in object detection during runtime.

In [25], Hamilton-Jacobi reachability was used to account
for closed-loop interactions with agents in the environment
to identify safety-critical perception zones in which correct
detection is crucial. Our work can be viewed as a comple-
mentary approach to [25] by allowing crucial misclassifica-
tions, according to system-level analysis, to be identified.

III. PRELIMINARIES

In this section, we give an overview of temporal logic,
which is useful in specifying system-level requirements
formally. We then provide a background of performance
metrics used to evaluate object detection and classification
models in the computer vision community. Finally, we setup
a simple discrete-state car-pedestrian system as a running
example to illustrate the role of these different concepts.
Note that our approach can be applied to more complex
systems, including those with continuous state, by applying
state-space discretization as later explained in Remark 2.

A. Temporal Logic for Specifying System-level Properties
System Specification. We use the term system to refer

to refer to the autonomous agent and its environment. The
agent is defined by variables VA, and the environment is
defined by variables VE . The valuation of VA is the set of
states of the agent SA, and the valuation of VE is the set of
states of the environment SE . Thus, the states of the overall
system is the set S := SA × SE . Let AP be a finite set of
atomic propositions over the variables VA and VE . An atomic
proposition a ∈ AP is a statement that can be evaluated to
true or false over states in S.

We specify formal requirements on the system in LTL (see
[11] for more details). An LTL formula is defined by (a) a set
of atomic propositions, (b) logical operators such as: negation
(¬), conjunction (∧), disjunction (∨), and implication ( =⇒
), and (c) temporal operators such as: next (⃝), eventually
(⋄), always (□), and until (U). The syntax of LTL is defined
inductively as follows: (a) An atomic proposition p is an LTL
formula, and (b) if φ and ψ are LTL formulae, then ¬φ, φ∨ψ,
⃝φ, φU ψ are also LTL formulae. Further operators can be
defined by a temporal or logical combination of formulas
with the aforementioned operators. For an infinite trace σ =
s0s1 . . ., where si ∈ 2AP , and an LTL formula φ defined
over AP , we use σ |= φ to denote that σ satisfies φ. For
example, the formula φ = □p represents that the atomic
proposition p ∈ AP is satisfied at every state in the trace,
i.e., σ |= φ if and only if p ∈ st,∀t. In this work, these
traces σ are executions of the system, which we model using
a Markov chain.

Definition 1 (Markov Chain [11]). A discrete-time Markov
chain is a tuple M = (S, Pr, ιinit, AP, L), where S is a
non-empty, countable set of states, Pr : S × S → [0, 1]



is the transition probability function such that for all states
s ∈ S, Σs′∈SPr(s, s

′) = 1, ιinit : S → [0, 1] is the initial
distribution such that Σs∈Sιinit(s) = 1, AP is a set of
atomic propositions, and L : S → 2AP is a labeling function.
The labeling function returns the set of atomic propositions
that evaluate to true at a given state. Given an LTL formula
φ (defined over AP ) that specifies requirements of a system
modeled by the Markov ChainM, the probability that a trace
of the system starting from s0 ∈ S will satisfy φ is denoted
by PM(s0 |= φ). The definition of this probability function
is detailed in [11].

B. Performance Metrics for Object Detection
We consider object detection to include both the detection

and the classification tasks. In this section, we provide
background on metrics used to evaluate performance with
respect to these perception tasks. Let the evaluation dataset
D = {(fi, bi, di, xi)}Ni=1 consist of N objects across m
image frames F = {F1, . . . , Fm}. For each object, fi ∈ F
represents the image frame token, bi specifies the bounding
box coordinates, di denotes the distance of the object to ego,
and xi denotes the true class of the object. When a specific
object detection algorithm is evaluated on D, each object has
a predicted bounding box, b̃i, and predicted object class x̃i.
We store these predictions in the set E = {(b̃i, x̃i)}Ni=1.

Definition 2 (Confusion Matrix). Let D be an evaluation
set of objects and E be the corresponding predictions by an
object detection algorithm. Let C = {c1, . . . , cn} be a set of
object classes in D, and let n denote the cardinality of C. The
confusion matrix corresponding to the classes C and dataset
D, and predictions E is an n× n matrix CM(C, E ,D) with
the following properties:

• CM(C, E ,D)[i, j] is the element in row i and column j
of CM(C, E ,D), and represents the number of objects
that are predicted to have class label ci ∈ C, but have
the true class label cj ∈ C, and

• the sum of the jth-column of CM(C, E ,D) is the total
number of objects in D belonging to the class cj ∈ C.

Several performance metrics for object detection and
classification such as true positive rate, false positive rate,
precision, accuracy, and recall can be derived from the
confusion matrix [1], [2], [19].

Remark 1. In this work, we use cn = empty (also
abbreviated to emp in figures) as an auxiliary class label in
the construction of confusion matrices. If an object has the
true class label ci but is not detected by the object detection
algorithm, then this gets counted in CM(C, E ,D)[n, i] as a
false negative with respect to class ci. If the object was not
labeled originally, but is detected and classified to have class
label ci, then it gets counted in CM(C, E ,D)[i, n] as a false
negative of the empty class. We expect that in a properly
annotated dataset, false negatives CM(C, E ,D)[i, n] to be
small. We ignore these extra detections in constructing the
confusion matrix because by not being annotated, they are
not relevant to the evaluation of object detection models.

Fig. 2: Running example of a car and pedestrian. If there is a
pedestrian at crosswalk cell Ck, that is, xe |= ped, then the car
must stop at cell Ck−1. Otherwise, it must not stop.

C. Example
Consider a car-pedestrian example, modeled using discrete

transition system as illustrated in Figure 2. The true state
of the environment is denoted by xe, the state of the car
comprises of its position and speed (xc, vc). The safety
requirement on the car is that it “shall stop at the crosswalk
if there is a waiting pedestrian, and not come to a stop,
otherwise”. The overall system specifications are formally
expressed as safety specifications in equations 1-3. A more
detailed description of this example can be found in [20].
(S1) If the true state of the environment is not a pedestrian,

i.e. xe ̸= ped, then the car must not stop at Ck−1.

φ1 = □((xe ̸= ped)→ ¬(xc = Ck−1 ∧ vc = 0)) , (1)

(S2) If xe = ped, the car must stop on Ck−1.

φ2 = □
(
xe = ped→ ((xc = Ck−1 ∧ vc = 0)

∨ ¬(xc = Ck−1))
)
, (2)

(S3) The agent should not stop at any cell Ci, for all i ∈
{1, . . . , k − 2},

φ3 = □¬(
k−2∨
i=1

(xc = Ci ∧ vc = 0)). (3)

The overall safety specification for the car is φ := φ1 ∧
φ2∧φ3. Since the car controller has been designed assuming
perfect perception, the specification for the pedestrian and
non-pedestrian environment simplifies to,

φped =□¬(
k−2∨
i=1

(xc = Ci ∧ vc = 0))
∧

□(¬(xc = Ck−1)

∨ (xc = Ck−1 ∧ vc = 0)),

φk =□¬(
k−1∨
i=1

(xc = Ci ∧ vc = 0)), k ∈ {obs, emp}.

As mentioned previously, we assume a static environment.
We also assume that the car knows the location of the cross-
walk, e.g. from HD map information, and that it can coarsely



localize whether the detected object is on the crosswalk.
The evaluation framework presented in this paper is valid
for any discrete-state control strategy, both deterministic and
probabilistic. To concretize the setup, we consider a car
controller that acts corresponding to the detection model’s
prediction of the environment at the crosswalk. If the car at
time step t detects a pedestrian, then it chooses its speed
according to a control strategy for φped to come to a stop
before the crosswalk at cell Ck−1. If the state of the car
is such that it is impossible to find a controller that will
bring it to a stop at cell Ck−1, then it decelerates as fast
as possible. Similarly, if an obstacle or empty sidewalk is
detected, then the car chooses its speed according to a control
strategy designed correct-by-construction for φk.

Remark 2. This paper proposes evaluation metrics for object
detection in safety-critical autonomous systems to provide
a probabilistic guarantee of the correctness of the overall
closed-loop system with respect to its system-level specifica-
tions. These systems typically comprise of both continuous
dynamics for low-level control of the physical system and
discrete logic responsible for high-level decision-making. A
common approach to integrate the reasoning of discrete and
continuous behaviors is to construct a finite state model that
serves as an abstract model of the physical system (which
typically has infinitely many states), and formally verify the
resulting finite state abstraction [31]–[38]. However, in this
work, we focus on the high-level logic and we assume that
the system has been abstracted using a finite state model.

IV. METRICS FOR EVALUATING OBJECT DETECTION

In this section, we present the construction of proposition-
labeled and distance parameterized confusion matrices. The
distance parametrization can be augmented to both the
proposition-labeled confusion matrix and the more traditional
class-labeled confusion matrix, as outlined in Algorithms 1
and 2, respectively. While the confusion matrix provides
useful metrics for evaluating object detection models, we
would like to use these metrics in evaluating the performance
of the system with respect to formal constraints in temporal
logic. In [20], an algorithm was provided for system-level
analysis by accounting for classification performance using
the canonical confusion matrix. For each confusion matrix,
we evaluate the system using the framework introduced in
[20], and compare the results.

A. Proposition-labeled Confusion Matrix

In many instances, the planner need not require correct
detections of every object to find a high-level strategy that is
consistent with system-level specifications. For instance, for
the planner to decide to stop for a group of pedestrians 20m
away, the object detection does not need to correctly detect
each and every pedestrian. In terms of quantifying system-
level satisfaction of safety requirements, it is sufficient for
the object detection to identify that there are pedestrians
20m away, and not necessarily to correctly detect the precise
number of pedestrians. Thus, we introduce the notion of

using atomic propositions as class labels in the confusion
matrix instead of the object classes themselves.

Let pi be the atomic proposition: “there exists an object
of class ci ∈ C”, and let P = {p1, . . . , pn} denote the
set of all atomic propositions. Let D0 < D1 < . . . <
Dk < . . . < Dkmax denote progressively increasing distances
from the autonomous vehicle. Let Dk ⊂ D be the subset
of the dataset that includes objects that are in the distance
interval zk = (Dk−1, Dk) from the autonomous system. Let
Ek denote the predictions of the object detection algorithm
corresponding to dataset Dk. For each parameter k, we
define the proposition-labeled confusion matrix CMprop,k =
CMprop(2

P , Ek,Dk) where the classes are characterized by
the powerset of atomic propositions 2P . Algorithm 1 shows
the construction of the proposition-labeled confusion matrix.

Algorithm 1 Proposition-labeled Confusion Matrix

1: procedure PropCM(Dataset D = {(fi, bi, di, xi)}Ni=1,
Classes C, Distance Parameters {Dk}kmax

k=0)
2: From {Dk}kmax

k=0, define distance intervals {zk}kmax
k=1

3: Run object detection algorithm to get predictions E ,
4: Initialize D1, . . . ,Dkmax as empty sets
5: Initialize E1, . . . , Ekmax as empty sets
6: for (fi, bi, di, xi) ∈ D do
7: if di ∈ zk then
8: Dk ← Dk ∪ {(fi, bi, di, xi)}
9: Ek ← Ek ∪ {(b̃i, x̃i)}

10: for cj ∈ C do
11: pj ≡ “there exists an object of class cj”
12: P ←

⋃
j{pj} ▷ Set of atomic propositions

13: for k ∈ {1, . . . , kmax} do
14: Denote CMprop(2

P , Ek,Dk) as CMprop,k
15: CMprop,k ← zero matrix
16: for f ∈ F do ▷ Loop over image frames
17: Group objects in Dk with image token f .
18: Group predictions in Ek with image token f .
19: Pi ← Predicted set of propositions
20: Pj ← True set of propositions
21: CMprop,k[Pi, Pj ]← CMprop,k[Pi, Pj ] + 1

22: CMprop(2
P , E ,D)= {CMprop(2

P , Ek,Dk)}kmax
k=0

23: return CMprop(2
P , E ,D)

The true environment is associated with a set of atomic
propositions evaluating to true. Suppose, there is a pedestrian
and a trash can in the distance interval zk from the ego,
then the true class label is {pped, pobs} in the distance-
parametrized confusion matrix CMprop,k. Note that for every
possible environment, there is only one corresponding class
in the proposition-labeled confusion matrix. Thus, for a given
true environment, the predicted class of the environment at
distance interval zk could be any element of the set 2P .
Therefore, at each time step, the set of detection outcomes
is Outc = 2P . The tuple (Outc, 2Outc) forms a σ-algebra for
defining a probability function over the proposition-labeled
confusion matrix. Since the set Outc is countable, we can



define a probability function µ : Outc → [0, 1] such that∑
e∈Outc µ(e) = 1. For a distance-parametrized confusion

matrix CMprop,k with class labels in the set Outc, and
for every true environment class label Pj , we can define
a probability function µprop,k(·, Pj) : Outc → 2Outc as
follows,

µprop,k(Pi, Pj) =
CMprop,k[Pi, Pj ]∑|2P |
l=1 CMprop,k[Pl, Pj ]

, ∀Pi ∈ 2P ,

(4)
where CMprop,k[Pi, Pj ] is the element of the confusion
matrix CMprop,k with predicted class label Pi and true class
label Pj . That is, for every confusion matrix CMprop,k where
k ∈ {1, . . . , kmax}, we define a total of 2|P| different prob-
ability functions, one for each possible true environmentPj .
Thus, the probability function µprop,k that characterizes the
probability of detecting an environment satisfying propo-
sitions Pi, given that the true environment at zk satisfies
propositions Pj . This helps to formally define the state
transition probability of the overall system as follows.

Definition 3 (Transition probability function for proposi-
tion-labeled confusion matrices). Let xe be the true envi-
ronment state corresponding to propositions Pj evaluating
to true, and let sa,1, sa,2 ∈ S be states of the car. Let
O(s1, s2) denote the set of all predictions of the environment
that prompt the system to transition from s1 = (sa,1, xe) to
s2 = (sa,2, xe). At state s1, let zk be the distance interval
of objects in the environment causing the agent to transition
from sa,1 to sa,2. The corresponding confusion matrix is
CMprop,k. Then, the transition probability from state s1 to
s2 is defined as follows,

Pr(s1, s2) :=
∑

Pi∈O(s1,s2)

µprop,k(Pi, Pj). (5)

Remark 3. For simplicity, we assume that objects at a
specific distance interval influence the agent to transition
from sa,1 to sa,2. However, Definition 3 can be extended
to cases in which objects at multiple distances can influence
transitions.

B. Class-labeled, distance-parametrized Confusion Matrix
This performance metric builds on the class-labeled con-

fusion matrix defined in Definition 2. As denoted previously,
let C = {c1, . . . , cn} be the set of different classes of objects
in dataset D. For every object in Dk, the predicted class of
the object will be one of the class labels c1, . . . , cn. For each
distance interval zk, we define the class-labeled confusion
matrix as CMclass,k := CM(C, Ek,Dk). Algorithm 2 shows
the construction of the class-labeled, distance-parametrized
confusion matrix. Therefore, the outcomes of the object
detection algorithm will be defined by the set Outc =
{c1, . . . , cn}m, where m is the total number of objects in
the true environment in the distance interval zk. The tuple
(Outc, 2Outc) forms a σ-algebra for defining a probability
function over the class-labeled confusion matrix CMclass,k.

Similar to the definition of a probability function, for ev-
ery class label cj , the probability function µclass,k(·, cj) :
Outc→ [0, 1] is defined as follows,

µclass,k(ci, cj) :=
CMclass,k[ci, cj ]∑n
l=1 CMclass,k[cl, cj ]

. (6)

Algorithm 2 Class-labeled Confusion Matrix

1: procedure ClassCM(Dataset D = {(fi, bi, di, xi)}Ni=1,
Classes C, Distance Parameters {Dk}kmax

k=0)
2: From {Dk}kmax

k=0, define distance intervals {zk}kmax
k=1

3: Run object detection algorithm to get predictions E ,
4: Initialize D1, . . . ,Dkmax as empty sets
5: Initialize E1, . . . , Ekmax as empty sets
6: for (fi, bi, di, xi) ∈ D do
7: if di ∈ zk then
8: Dk ← Dk ∪ {(fi, bi, di, xi)}
9: Ek ← Ek ∪ {(b̃i, x̃i)}

10: for k ∈ {0, . . . , kmax} do
11: Denote CMclass(C, Ek,Dk) as CMclass,k
12: CMclass,k ← zero matrix
13: for fi ∈ {f1, . . . , fm} do ▷ Loop over images
14: for object in Dk do
15: ci ← Predicted class label of object
16: cj ← True class label of object in Ek
17: CMclass,k(ci, cj)← CMclass,k(ci, cj) + 1

18: CMclass(C, E ,D)= {CMclass(C, Ek,Dk)}kmax
k=0

19: return CMclass(C, E ,D)

Definition 4 (Transition probability function for class-labeled
confusion matrix). Let the true environment be represented
as a tuple xe corresponding to class labels in the region
zk (class labels can be repeated in a tuple xe when multiple
objects of the same class are in region zk). Let sa,1, sa,2 ∈ S
be states of the car, and let O(s1, s2) denote the set of all
predictions of the environment that prompt the system to
transition from s1 = (sa,1, xe) to s2 = (sa,2, xe). Likewise,
the tuple ye represents the object detection model’s predic-
tions of the environment. Then, the transition probability
function from state s1 to s2 is defined as follows,

Pr(s1, s2) :=
∑

ye∈O(s1,s2)

|ye|∏
i=1

µclass,k(ye(i), xe(i)). (7)

For both transition probability functions (7) and (5), we
can check (by construction) that ∀s1 ∈ S,

∑
s2
Pr(s1, s2) =

1. In the running example, if the crosswalk were to have
another pedestrian and a non-pedestrian obstacle, then the
probability of detecting each object is considered indepen-
dently of the others. This results in the product of probabil-
ities µclass,k(·, xe(i)) in equation (7).

C. Markov Chain Construction [20]
For each confusion matrix, we can synthesize a corre-

sponding Markov chain of the system state evolution as per



Algorithm 3. As a result of prior work shown in [20], using
off-the-shelf probabilistic model checkers such as Storm
[39], we can compute the probability that the trace of a
system satisfies its requirement, P(s0 |= φ), by evaluating
the probability of satisfaction of the requirement φ on the
Markov chain. Let O(xe) be the set of all possible predic-
tions of true environment state xe by the the object detection
model. The system controller K : S × O(xe) → S accepts
as inputs the current state of the agent and the environment,
s0 ∈ S, and the environment state predictions ye ∈ O(xe)
from object detection. Based on the predictions, it actuates
the agent resulting in the end state sf ∈ S. At each time
step, the agent makes a new observation of the environment
(ye) and chooses a control action corresponding to ye.

Algorithm 3 Markov Chain Construction

1: procedure Markov Chain(S,K,O(xe), CM, xe)
2: Pr(s, s′) = 0, ∀s, s′ ∈ S
3: for so ∈ S do
4: ιinit(s0) = 1
5: for ye ∈ O(xe) do
6: sf ← K(so, ye) ▷ Controller
7: Identify zk according to Definitions 3, 4
8: µprop,k, µclass,k ← Equations (4), (6).
9: if proposition-labeled then

10: Pj ← Propositions for true xe
11: Pi ← Propositions for predicted ye
12: p← µprop,k(Pi, Pj)

13: if class-labeled then
14: p←

∏|ye|
i=1 µclass,k(ye(i), xe(i))

15: Pr(so, sf )← Pr(so, sf ) + p

16: return M = (S, Pr, ιinit, AP, L)

Proposition 1. Suppose we are given: i) φ as a temporal
logic formula over system states S, ii) true state of the
environment xe, iii) agent initial state sa,0, and iv) a Markov
chainM constructed via Algorithm 3 for the distance param-
eterized confusion matrices constructed from Algorithm 1 or
Algorithm 2, then P(s0 |= φ) is equivalent to computing
PM(s0 |= φ), where s0 = (sa,0, xe).

V. SIMULATION RESULTS

We present the distance-parametrized, proposition-labeled
and class-labeled confusion matrices for a pre-trained
YoLov3 model [22] evaluated on the first 85 scenes of
the NuScenes dataset [23]. For this YoLov3 model and the
controller described in the running example, we compute the
probability of satisfaction that the car will meet its safety
requirements given in equations (1)-(3). The YoLov3 [22]
model was trained on the MS COCO dataset [40]. Note
that we chose to evaluate a model on an evaluation set
different from the source of the training set. Each scene
is 20 seconds long, with 3D object annotations made at
2 Hz for 23 different classes. All objects with nuScenes
annotation “human” are clustered under the class ped, and

Fig. 3: YoLo-v3 detecting the car and truck as objects of class
obs, but not detecting the pedestrians. The red boxes denote the
YoLo predictions and the light blue boxes denote the corresponding
ground truth annotations for correctly detected objects.

Pred
True ped obs emp

ped 31 0 0
obs 0 165 0
emp 121 665 2722

TABLE I: Class-labeled Confusion matrix for distance d ≤ 10.0

all objects annotated as “vehicle”, “static obstacle”, and
moving obstacle are annotated as obs. We use all 40 frames
from the CAM-FRONT sensor in each scene to form our
dataset D. The LiDAR sweeps accompanying each scene
provides distances of annotated objects from the ego vehicle.
We also project the annotated 3D bounding boxes from
nuScenes to 2D to match the predicted detections from the
YoLov3 model. These evaluations are used to construct the
(distance-parametrized) class-labeled and proposition-labeled
confusion matrices from Algorithms 1 and 2 with 10m
distance intervals with parameters D0 = 0 and Dkmax =
100m. The class-labeled confusion matrix for objects less
than 10 m from the autonomous vehicle is given in Table I
and the proposition-labeled confusion matrix for objects less
than 10m from the autonomous vehicle is given in Table II.
For brevity, the full distance-parametrized and proposition-
labeled confusion matrices are at this GitHub repository1

For each confusion matrix and for each initialization of
the car-pedestrian example, a Markov chain model of the
overall system is constructed according to Algorithm 3, and
the satisfaction probabilities for specifications (1)-(3) are
computed using Storm [39]. As illustrated in Figure 4, the
satisfaction probabilities of safety requirements are relatively
low at around 20% for a maximum speed of 1. This is
for several reasons. First, we evaluated a model trained on
one modality (2D object detection with monocular vision);
typically the best models are multi-modal and use data
from several different sensors. Secondly, we do not consider
tracking in our evaluation. Finally, we used a pre-trained
model that was not trained on the NuScenes dataset in part
because the objective of this work is to illustrate evaluation
metrics and not necessarily to pick the best detection models.
As a next step, we would like to conduct this analysis on
object detection models trained on multi-modal data from

1https://github.com/abadithela/Dist-ConfusionMtrx

https://github.com/abadithela/Dist-ConfusionMtrx


(a) (b) (c) (d)

Fig. 4: Satisfaction probabilities PM(s0 |= φ) for the car pedestrian example with Markov chains M derived from the various confusion
matrices. Each plot shows the satisfaction probability as a function of initial speed, with maximum speed as the legend.

Pred
True ped obs ped, obs emp

ped 22 0 5 0
obs 0 158 4 0
ped, obs 0 0 0 0
emp 59 310 11 2722

TABLE II: Proposition-labeled Confusion matrix for distance d ≤
10.0. As expected, the sum total of samples for each label are no
larger than for the corresponding label in the class-labeled confusion
matrix.

Fig. 5: Sensitivity analysis of the system-level satisfaction
probability for varying true positive rates of detecting pedes-
trians. The errorbars report standard deviation on satisfaction
probability for the randomly generated confusion matrices.

LIDAR and multiple cameras, including baseline models
from the nuScenes [23] detection challenge. The choice of
a stronger object detection model would better highlight
the strength of our evaluation framework, as illustrated in
Figure 5. For each true positive rate for the pedestrian class,
50 random instances of the 3×3 class-labeled confusion ma-
trix were generated. Even though the class-labeled confusion
matrix is the most conservative, we observe that system-level
satisfaction probability is close to 1 when the true positive
rate is high (> 99%).

Despite the low probabilities, we observe insightful dif-
ferences in the satisfaction probabilities resulting from the
choice of confusion matrix. Between canonical class based
confusion matrix and its distance-parametrized counterpart

(see Figures 4a and 4b), we see a two-fold increase in
satisfaction probability PM(s0 |= φ) for low speeds. Similar
trends hold for for proposition-labeled confusion matrix and
its distance parameterized variants as seen in Figures 4c
and 4d. Across all confusion matrices, satisfaction proba-
bility decreases with speed, corresponding to not being able
to recover from misdetections at higher speed, which is due
to our choice of controller. Lastly, the proposition-labeled
confusion matrix results in higher satisfaction probabilities
than its class-labeled counterpart.

VI. CONCLUSION AND FUTURE WORK

We introduced two evaluation metrics, a proposition-
labeled confusion matrix and a class-labeled distance pa-
rameterized confusion matrix, for object detection tasks.
Parameterizing the confusion matrix with distance accounts
for differences in detection performance in the temporal logic
analysis with the planning module. We empirically observed
that the proposition-labeled confusion matrix resulted in
less conservative satisfaction probabilities than the canonical
class-labeled confusion matrix. The distance-parametrized
metric further reduced conservativeness by accounting for
variations in detection performance based on distance.

We envision several exciting directions for future work.
First, to augment our framework to handle dynamic en-
vironments, we consider building on the work in [27],
which studies quantitative analysis of systems that operate
in partially known dynamic environments. It assumes that
the environment model belongs to a set Menv of Markov
chains. The system does not know the true model of the
environment, and instead maintains a belief, which is defined
as a probability distribution over all possible environment
models in Menv . We will extend our work to derive the
belief update function based on the perception performance.
Second, we plan on hardware demonstrations to validate the
results of the quantitative analysis presented here. Finally,
we would like to handle tracking to further reduce the
conservativeness in our analysis.
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