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Abstract. Urban air mobility (UAM) refers to air transportation ser-
vices in and over an urban area and has the potential to revolutionize
mobility solutions. However, due to the projected scale of operations,
current air traffic management (ATM) techniques are not viable. In-
creasingly autonomous systems are a pathway to accelerate the realiza-
tion of UAM operations, but must be fielded safely and efficiently. The
heavily regulated, safety critical nature of aviation may lead to multi-
ple, competing safety constraints that can be traded off based on the
operational context. In this paper, we design a framework which allows
for the scalable planning of a UAM ATM system. We formalize safety
oriented constraints derived from FAA regulations by encoding them as
temporal logic formulae. We then propose a method for UAM ATM that
is both scalable and minimally violates the temporal logic constraints.
Numerical results show that the runtime for our proposed algorithm is
suitable for very large problems and is backed by theoretical guarantees
of correctness with respect to given temporal logic constraints.

1 Introduction

1.1 Problem significance

Recent years have seen increased urbanization, economic expansion, underin-
vestment in infrastructure, and the rise of ride hailing services and e-commerce.
These changes have led to an increase in transportation delays, vehicle con-
gestion during peak times, and environmental impacts resulting in escalating
mobility challenges in urban areas. The emerging Urban Air Mobility (UAM)
aviation market is being catalyzed by advances in increasingly autonomous sys-
tems, electric propulsion, and novel business models such as on-demand, aerial
ride sharing, thereby helping to address congestion issues in urban areas [5].

UAM has the potential to be a safe, functional solution to the air trans-
portation problem for passengers and cargo in and around a densely populated
urban area. An air traffic management system that governs a large number of
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these novel UAM operations over a small geographical area in a safe and efficient
fashion is key to the realization and deployment of the UAM vision.

1.2 Scalable and Verifiable Safety for UAM

The scale and density of projected UAM operations will far exceed the safe work-
load capacity of human controllers, necessitating the deployment of increasingly
autonomous solutions for functions like aircraft management (e.g., managing
flightpath and altitude requests, managing airborne and ground based holding
times, etc.) and aircraft separation.

Currently, there is no established infrastructure for air traffic management
of a scalable UAM concept of operations. Under current aviation paradigms,
air traffic management is carried out in a centralized fashion by air traffic con-
trollers. The U.S. National Airspace System (NAS) is comprised of 5.3 million
square miles of domestic airspace and 24 million square miles of oceanic airspace.
There are approximately 5,000 flights airborne at any given moment. Over 14,000
air traffic controllers manage these aircraft and perform multiple safety-critical
functions, such as air traffic separation which guarantees that a minimum spac-
ing between aircraft is maintained [7]. In contrast, for UAM operations to deploy
at scale for profit, it will be necessary to have hundreds (or even thousands) of
UAM aircraft aloft over an urban airspace under 500 square miles [9]. The sheer
number of vehicles, along with the necessary reduced separation criteria between
them in order to achieve the required densities, will require the development of
increasingly autonomous capabilities for aircraft clearance, separation, and flow
management in the UAM ecosystem.

Deploying increasingly autonomous systems in the US airspace is a challenge.
Commercial aviation is among one of the most safety-critical systems in the world
and has stringent standards for the design, deployment, and operation of aircraft
and air traffic control systems. These regulations are detailed in chapter 14 of
the Code of Federal Regulations (14 CFR). The ability to assure increasingly
autonomous systems to aviation grade standards is thus crucial for their accep-
tance. Safety-critical functions such as aircraft separation must provide strict
guarantees on their behavior and the correctness of their outcomes. Thus, in-
creasingly autonomous air traffic management systems will have to tackle the
dual issues of scalability and verifiable safety in order to be deployed in the NAS.

1.3 Setting

In this paper, we employ a hierarchical decomposition of the UAM operations
space motivated by the physical and geographical infrastructure required to field
the system. Such an architecture has been studied in [3, 2] and allows for scalable
air traffic management. UAM vehicles take off and land from a landing pad,
called a vertipad, which includes the final approach and takeoff (FATO) area. A
vertiport is comprised of several vertipads, the respective vertipad FATOs, and
charging and maintenance facilities. A vertihub is comprised of several vertiports.
Vertihubs provide air traffic control services (i.e., real time control of aircraft
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movement) between vertiports under their control and air traffic management
services (i.e., strategic and long term planning of aircraft movement and flows)
for vehicles transiting between adjacent vertihubs. Figure 1 provides a visual
representation of vertiports and vertihubs. We focus on a synthesis strategy for
vertihubs, each of which is responsible for assuring the safety of all vehicles in
its airspace.

Fig. 1. Vertihub and vertiport depiction

In general, it is not always feasible to guarantee the satisfaction of all safety
constraints under all conditions. Such scenarios are explicitly accounted for in 14
CFR §107.21, which allows for emergency deviation from regulations if required
as long as the deviation is reported. For example, a vehicle may have to make
an emergency landing if it is about to run out of fuel, even if violates separation
requirements. Thus, there is a need for an air traffic management approach
that allows for formally justifiable violation of safety constraints if necessary.
In this paper, we study the synthesis of control strategies for automated air
traffic management for UAM while obeying safety regulations. In particular, we
focus on the case where all safety regulations cannot be feasibly satisfied, as is
allowed for small, cargo-carrying UAS under emergency operation. We present a
decentralized, scalable synthesis approach that provably minimally violates the
given safety requirements. Note that if it is possible to satisfy all safety properties
for the duration of the flight, the approach yields a solution with zero violations
(i.e., all safety requirements are guaranteed for the duration of the flight).

1.4 Contribution and Innovation

We present the first decentralized approach to minimum violation planning. We
use temporal logic for a formal representation of safety regulations and guar-
antee that these regulations are minimally violated across the global system.
Furthermore, we establish a framework in this paper for minimum-violation for
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the small UAS cargo-carrying application over urban areas. Our framework has
the following properties:

– Scalability - UAM operations are envisioned to occur at a scale well beyond
the capabilities of current air traffic management approaches, as current
day approaches are typically labor-intensive. It is crucial to safely guarantee
operations of increasingly autonomous vehicles at scale in order for UAM to
be commercially viable.

– Decentralization - The environment is likely to encompass multiple service
providers and stakeholders. Each stakeholder will have potentially competing
priorities and requirements. Consequently, the full state of the entire system
is unlikely to be controlled or even observed by a single entity.

– Transparency - With companies ranging from startups to corporations devel-
oping UAM vehicles, services, and capabilities, there is a disconnect between
regulation and the pace of technological development. Bridging the gap be-
tween regulation and real-world implementation practices is necessary for a
viable path to deployment.

– Flexibility - The technological and regulatory landscape of UAM is rapidly
changing. Any proposed framework that cannot efficiently incorporate a
change in regulation or emerging capabilities is not a viable solution.

– Auditability - All violations of regulations must be formally accounted for
and reported. Our proposed method implicitly allows for such an analysis,
as it not only synthesizes a control strategy for air traffic management but
also the associated violation.

1.5 Path to deployment

Assessing the safety of an increasingly autonomous system relies on being able
to bound the behavior and interactions of the components of the system as well
as its interfaces with its operational environment. Performance-based regulation
is employed in aviation to specify explicit properties that must be evinced by
a component or element of the system (and/or operational environment) in or-
der for the system safety claims to be met. For example, 14 CFR §107.49 (d)
states that: “If the small unmanned aircraft is powered, ensure that there is
enough available power for the small unmanned aircraft system to operate for
the intended operational time”. This fuel requirement forms a temporal logic
constraint on the vehicle during its flight. The controller synthesis method for
the vertihubs must adhere to this constraint, in order to demonstrate compli-
ance to 14 CFR §107.49. The minimum violation guarantees provided by the
presented synthesis process help to demonstrate that this regulation will be sat-
isfied as much as possible throughout the flight process. Thus, the guarantees
provided by the synthesis method presented in this paper may serve as a partial
means of compliance to the regulation—supplemented with the generation of
test and design analysis artifacts as well as operational procedures.

The presented synthesis framework provides a path to deployment of these
increasingly autonomous systems in safety-critical contexts. Air traffic manage-
ment services, such as aircraft separation, may then be offered in a UAS Traffic
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Management (UTM) inspired framework, which interfaces with today’s tradi-
tional Air Traffic Management framework [17]. In this framework, authority may
be delegated by the FAA to provide select air traffic management services such
as low-altitude weather information, congestion management, terrain avoidance,
route planning, re-rerouting, separation management, and contingency manage-
ment [13, 15]. One of the main attributes of the UTM system is that it does
not require human operators to monitor every vehicle continuously, as in the
traditional ATM system, thereby enabling increasingly autonomous realizations
of specified air traffic management functions. We believe that integration of the
approach in this paper into a UTM-like construct provides a path to deployment
for UAM operations, as the provided safety guarantees will greatly enhance the
assurance case for higher-risk operations currently not supported by UTM (e.g.,
operations in dense urban environments with UAS exceeding 55 lbs).

1.6 Related work

Some preliminary work is being done in cooperative ATM for next generation
air traffic management [16], but this work considers a scheduled approach for
large passenger aircraft and cannot handle management for on-demand flights.
Similarly, there is work done on distributed control for ATM of small unmanned
aerial systems (UAS) [8], but this work relies on cloud based architectures that
do not currently satisfy strict aviation safety requirements. Hybrid control ap-
proaches have been applied [19], however scalability proves to be an issue. To the
best of our knowledge, this is the first approach implementing minimally violat-
ing controller synthesis for large-scale UAM ATM operations. Formally verified
tools such as DAIDALUS [14] provide safety guarantees at lower levels of oper-
ations, however, it does not handle the fleet-level operations. Another approach
called runtime enforcement [6, 18] aims to guarantee a specified property by de-
tecting and altering the behavior of the system at runtime. An existing approach
called shielding [4, 12] uses reactive synthesis and assumes that the shield has
full knowledge and control of the whole system — in this case the entire UAM
system and the vehicles it handles. A technique for synthesizing quantitative
shields for multi-agent systems in a fully centralized manner was presented in
[1]. However, all these approaches are only applicable if a feasible solution exists.
If it is not possible to satisfy all safety requirements, no solution is possible. In
contrast, in the approach presented in this work, if no feasible solution exists,
we can still synthesize a controller that minimally violates safety.

Our approach is based on minimum-violation planning [20, 21] for systems
that are subject to potentially infeasible safety requirements. Given a priori-
tized safety specification, which specifies the priority and weight of each safety
requirement, minimum-violation planning computes a plan that minimally vio-
lates the requirements. In particular, we propose a novel decentralized approach
to minimum-violation planning in order to handle large-scale systems that can-
not be handled by current state-of-the-art approaches.
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2 Notation and Setting

In this section, we present the relevant technical notation for the minimum vio-
lation synthesis problem in the UAM setting.

2.1 Operating environment

Recall that the environment is divided into smaller regions called vertihubs. Each
vertihub is governed by a vertihub controller that has radio line of sight to all
vehicles in the region denoted as Ti as shown in Figure 2. A vertihub controller
is responsible for managing requests by UAM vehicles (henceforth referred to as
vehicles) to either land at or take off from a desired vertiport in its region or
pass through to a neighboring region.

T1

T2

T3

T4

T5

T6

Fig. 2. Example UAM operating environment. Green circles correspond to the regions
of vertihub controllers.

Requests We define a request as a tuple O = (r, T, c) where

– r ∈ R is the request class from a predefined set of classes R. Request classes
include landing at a particular vertiport in the region, pass-through region,
take-off from vertiport in the region. Depending on the nature of the problem,
R can be defined to capture all types of desired outcomes for vehicles.

– T ∈ N is the amount of time left before the request must be granted. t can
function as an analogue for fuel reserves as vehicles requesting to land cannot
hover indefinitely.

– c ∈ C is the class of UAM vehicle from a predefined set of vehicles C.

At any given timestep t the vertihub is managing requests from multiple vehicles.
We define the initial set of requests as the request allocation and denote it as
Oinit. We model the vertihub controller that is responsible for managing these
requests as a labeled weighted finite transition system.

Example 1. Tower T1 is given a set ofN requests to handleOinit = {OT11 . . . OT1N }.
For example, OT11 = (portA, 5, passenger) corresponds to a request by a passen-
ger vehicle trying to land at port A in at most 5 time steps.
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Transition system model for vertihub controller A vertihub controller
is modeled as a tuple referred to as a labeled weighted finite transition system
Ti = (Si, siniti , ∆i,APi, Li) where

– Si is a finite state space. It is the set of all currently unapproved requests.
Formally, if there are currently m unapproved requests, we write Si =
{Oi,1 . . . Oi,m}. We note that the state space can also include additional fea-
tures of interest such as number of vehicles in the airspace, their landing/take-
off statuses, and others. However, for notational simplicity we do not include
these in the definition presented in this paper. In practice, these features,
alongside the relevant modifications to the transition function, are straight-
forward to include.

– siniti ∈ Si is the initial set of requests Oinit
i .

– ∆i ⊆ Si × Si is the deterministic transition function that governs how re-
quests evolve. We have

(
Sti , S

t+1
i

)
∈ ∆i if:

• all approved requests at timestep t, denoted Oti,a ⊆ Sti , are not present

in St+1
i , i.e., if Oi,j ∈ Oti,a then Oi,j /∈ St+1

i , and
• all unapproved requests at timestep t, denoted Sti \Oti,a, have their time

remaining decremented, i.e., for all Oi,j = (r, T, c) and Oi,j ∈ Sti \ Oti,a,

we will have Oi,j ∈ St+1
i and Oi,j = (r,max(T − 1, 0), c). Informally,

if request is not approved ∆i decrements the remaining timer on the
request by 1.

– AP is a set of atomic propositions.
– L : S → 2AP is the labeling function.

At every timestep, the decision problem for the controller is to choose a set
Oti,a ⊆ Sti of requests to approve. The controller will also have the option to
reroute the request to neighboring controllers. We discuss this process formally
in Section 3.

Example 2. Consider vertihub controller T1 with two pending requests OT11 =
(portA, 5, passenger) andOT12 = (portA, 3, passenger). In this case, at time step
t we have St1 = {O1,1, O1,2} where O1,1 = OT11 and O1,2 = OT12 . Let us assume at
time step t that the controller approves request O1,2. We denote this as Ot1,a =

{O1,2} and we will have St+1
1 = {O1,2} where O1,1 = (portA, 4, passenger).

A finite trace of Ti is a finite sequence of states τi = si,0si,1 . . . si,n such
that si,0 = siniti and (si,j , si,j+1) ∈ ∆i, for all j ∈ N≤n−1. A finite trace τ =
s0s1 . . . sn produces a finite word w(τ) = L(s0)L(s1) . . . L(sn). For any s ∈ S,
we let Traces(T , s) represents the set of all finite traces of T that ends with s.

The aim of the transition system Ti is to reach a goal state denoted sfinal ∈ Si.
Since the hub controller needs to eventually grant all requests, sfinal corresponds
to the state with no more pending requests. Formally, we have sfinal = ∅.

The goal of this approach is to synthesize a trace for each vertihub such
that requests are accepted in a manner that satisfies all regulations. However, if
this is not possible, it must approve requests in a way that minimally violates



8 S. Bharadwaj et al.

regulations. We employ linear temporal logic due to its ability to formally express
a wide array or requirements.

We employ finite linear temporal logic (FLTL) to precisely describe the
safety-oriented regulations. We note this FLTL has been used in the context
of autonomous driving to formally represent road safety laws for planning [20,
21].

Finite linear temporal logic An FLTL formula is built up from (a) a set
of atomic propositions; (b) the logic connectives: negation (¬), disjunction (∨),
conjunction (∧), and material implication ( =⇒ ); and (c) the temporal opera-
tors: next (#), always (�), eventually (3), and until (U). We refer the reader
to [11] for full FLTL semantics.

An FLTL formula ψ over a set AP of atomic propositions is interpreted over
a finite word w = l0l1 . . . ln ∈ (2AP)n+1, and we write w |= ψ if w satisfies ψ. In
particular, consider p ∈ AP. Then, w |= p if and only if p ∈ l0. Also, w |= �p if
and only if p ∈ li for all i ∈ {0, . . . , n}.

Example 3. 14 CFR §107.49 (d) requires the vehicle to have enough power for its
operations and hence, a vertihub cannot force a vehicle to loiter for too long. We
can capture this as a specification ψ = �{¬fuel too lowi} where fuel too lowi
is an atomic proposition that is true when request Oi = (r, T, c) has T = 0.

Prioritized safety specification A prioritized safety specification is a tuple
P = (AP, Ω, Ψ,$) where AP is a set of atomic propositions, Ω is a set of FLTL
formulas over AP, Ψ = (Ψ1, Ψ2, . . . , ΨN ), Ψi ⊆ Ω for all i ∈ {1, . . . , N}, and
$ : Ω → N is the priority function that assigns the weight to each ψ ∈ Ω.

Example 4. A potential prioritized safety specification Ψ = {Ψ1, Ψ2} for a verti-
hub to satisfy is Ψ1 = {ψ1,1}, Ψ2 = {ψ2,1, ψ2,2, ψ2,3} where

– ψ1,1 = Never allow the timer on a request to expire.

– ψ2,1 = Do not land vehicles past a vertiport’s capacity.

– ψ2,2 = Do not allow more than M vehicles in the vertihub’s airspace at a
time.

– ψ2,3 = Do not land a vehicle at a vertiport it did not request.

Note that the requirements at level i are strictly more important than those
at level i+1, i.e., the system first attempts to minimize the amount of violation
of level-1 requirements. Then among all the policies that minimize the violation
of level-1 requirements, it attempts to minimize the amount of violation of level-
2 requirements, and so on. In Example 4, the first specification is the highest
priority and the remaining specifications are all of equal priority. We use this
example in the case study detailed in the Experimental Results section.
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Lack of safety Consider an FLTL formula ψ over AP and a finite word w =
l0l1 . . . ln ∈ (2AP)n+1. The lack of safety of w with respect to ψ is defined as

λ(w,ψ) = min
I⊆N≤n|vanish(w,I)|=ψ

|I|, (1)

where for any given finite sequence w = l0l1 . . . ln and a set I ⊆ N, vanish(w, I)
is defined as a subsequence of w obtained by removing all li, i ∈ I.

Let P = (AP, Ω, Ψ,$) be a prioritized safety specification where Ψ = (Ψ1, Ψ2, . . . , ΨN ).
We define the lack of safety of w with respect to P as

λ(w,P) = (λ(w, Ψ1), . . . , λ(w, ΨN )) ∈ NN , (2)

where for each i ∈ {1, . . . , N},

λ(w, Ψi) =
∑
ψ∈Ψi

$(ψ)λ(w,ψ). (3)

Note that there are two mechanisms to address the unequal importance of
safety specifications. Namely, the prioritization of specifications by Ψ and the
weighting function $(ψ). The weights $ indicates the importance among differ-
ent requirements within the same level.

The lack of safety of a trace τ of a finite transition system with respect to P
is defined based on its produced word, i.e., λ(τ,P) = λ(w(τ),P). The standard
lexicographical order is used to compare the lack of safety between different
traces.

Remark 1. There are two mechanisms to specify the unequal importance of dif-
ferent specifications, the hierarchy (Ψ1, Ψ2, . . . , ΨN ) and the weights captured by
$. As the standard lexicographical order is used to compare the lack of safety
between different traces, the algorithm first minimizes the lack of safety with
respect to the specifications in Ψ1. Then, among all the traces that minimizes
the lack of safety with respect to Ψ1, it minimizes the lack of safety with re-
spect to the specifications in Ψ2, and so on. The weights $ only matter for the
specifications within the same level of hierarchy.

3 Problem Formulation

Global system We define the global system as the composition of the verti-
hub controllers. Assume we have N vertihub controllers T1 . . . TN . We define a
connectivity graph GT as a directed graph with each vertex corresponding to
a controller. We say two controllers are connected if they share an edge in the
graph. Let connect(Ti) be the set of hub controllers Tj where i 6= j, that share
an edge with Ti. For example, in Figure 2, overlapping hub regions share an edge
in the corresponding directed graph in Figure 3, and therefore the corresponding
controllers are connected.

Formally, we define the global system as a tuple (Oinit, Φ, T ) where Oinit =
{O1, . . . , OM} is the global set of requests across all vertihubs, Φ : {T1, ..., TN} →
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T1 T3
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T5
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Fig. 3. The connectivity graph GT of the UAM hub controllers T depicted in Figure 2.
Each edge eij corresponds to Ti and Tj being connected, i.e., the outputs of Ti are inputs
to Tj and vice versa.

2|O
init| is the request allocation function such that Φ(Ti) is the request set allo-

cated to hub Ti, and T = (S, sinit, ∆,AP, L) is a networked composition of N
hub controllers T1, . . . , TN such that:

– S = (S1, S2, . . . , SN ) where Si is the set of all currently unapproved requests
assigned to hub Ti. Note, however, that due to possible reallocation of re-
quests, it is not necessary that Si only contains the requests in siniti . Instead,
it contains requests in

⋃
i siniti such that each request is assigned to at most

one hub, i.e., Si ∩ Sj = ∅ for all i, j.
– sinit = (sinit1 , sinit2 , . . . , sinitN )
– ∆ ⊆ S × S such that

(
St, St+1

)
∈ ∆ if for each unapproved request Oi =

(r, T, c) ∈ Sti at each hub Ti,
• it remains unapproved with its time remaining decremented and either

assigned to the same hub, i.e., Oi = (r, T − 1, c) ∈ St+1
i , or a connected

hub, i.e., Oi = (r, T − 1, c) ∈ St+1
j for some Tj ∈ connect(Ti), or

• it is approved by hub Ti or a connected hub Tj ∈ connect(Ti), i.e.,
Oi ∈ Oti,a ∪ Otj,a, in which case the request is not present in

⋃
k S

t+1
k .

– AP = AP1 ∪AP2 ∪ · · · ∪APN
– L : S → 2AP such that L(s1, . . . , sN ) =

⋃
i Li(si).

Put simply, we construct the transition function ∆ as the composition of
intra-hub transitions and inter-hub transitions. Since vehicles can only move
between neighbouring hubs, inter-hub transitions are limited to occurring only
between those hubs that are connected in the graph GT . finish ex

Example 5. Consider request S0
1 = {OT11 = (portA, 5, passenger) , OT12 = (portA, 3, passenger)}

corresponding to a request by a passenger vehicle trying to land at port A in at
most 5 time steps.

Vertihub violation cost Each vertihub Ti is given a prioritized safety specifica-
tion Pi and request allocation Φ(Ti) = siniti . Given a request allocation function
Φ, the violation cost of vertihub Ti executing a finite trace τi ∈ Traces(Ti, sfinal)
is denoted λΦ(Ti)(τi,Pi). We denote the optimal violation cost of Ti for a request
allocation function Φ as λ∗Φ(Ti) = minτi∈Traces(Ti,sfinal) λΦ(Ti)(τi,Pi).
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The cost of the global system T is dependent on the conjunction of the
prioritized specifications P = P1 ∧ P2 ∧ · · · ∧ PN , global requests Oinit, and
request allocation function Φ. Formally, we define

λΦ =

N∑
i=1

λ∗Φ(Ti). (4)

3.1 Problem statement

Given a set of N hub controllers T1 . . . TN , a connectivity graph GT and a
prioritized safety specification for each controller P1, . . . ,PN with P = P1 ∧
· · · ∧ PN , construct a request allocation function Φ and corresponding trace
τ∗ = {τ1, . . . , τN} where τi ∈ Traces(Ti, sfinal) that minimizes the lack of safety
for the entire system. Formally,

τ∗ = arg min
τ∈{Traces(T ,sfinal)}

λ(τ,P). (5)

4 Solution Approach

4.1 Overview

Motivated by the cost structure in (4), we decompose the traffic management
problem into two subproblems:

1. Compute an optimal request allocation Φ∗ such that

N∑
i=1

λ∗Φ∗(Ti) ≤
N∑
i=1

λ∗Φ(Ti),

for any request allocation Φ. Informally, the optimal request allocation Φ∗

will have a lower or equal cost compared with any other allocation.
2. Given a request allocation Φ, compute an optimal trace τ∗i for each vertiport
Ti such that

λΦ(Ti)(τ
∗
i ,Pi) ≤ λΦ(Ti)(τi,Pi),

for any trace τi ∈ Traces(Ti, sfinali).

The second problem can be solved using minimum-violation planning as in [20,
21]. To solve the first problem, we need to find the globally optimal request
allocation for all the vertihubs. This is a combinatorially hard problem. To solve
the problem in a distributed manner, we propose an auction-based algorithm.
In each round, each vertihub identifies potential requests to be reallocated and
offers each of these requests to other connected vertihubs. The request with
highest cost is then selected, and a connected vertihub accepts this request if
it can accommodate the extra request with less cost than the original vertihub.
Finally, the request will be reallocated to the vertihub that can accommodate the
request with the lowest cost. This auction-based request allocation ensures that
the overall cost decreases in each round and terminates when no more requests
can be reallocated without extra cost.
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Algorithm Given a request allocation Φ, we define the cost of vertihub Ti
accommodating a request O as

CΦi (O) = min
τi

λOi
O

(τi,Pi)−min
τi

λOi
6O

(τi,Pi), (6)

where OiO = Φ(Ti) ∪ {O} is the set of requests allocated to Ti together with the
request O, and Oi6O = Φ(Ti) \ {O} is the set of requests allocated to Ti without
the request O.

The algorithm initializes Φ based on the desired location associated with each
request. Then, it updates Φ iteratively as follows.

(a) Initialize the set O of potential requests to be reallocated in this iteration
as the empty set.

(b) Each vertihub Ti computes the cost CΦi (O) for accommodating each request
O ∈ Φ(Ti). It then adds each request as well as its associated cost (O,CΦi (O))
to O for all requests O with CΦi (O) > 0.

(c) If O is empty, then the algorithm terminates and outputs Φ. Otherwise, we
let O∗ be the request with the highest cost in O and C∗ be its associated
cost.

(d) Each vertihub Ti computes the cost CΦi (O∗) for accommodating O∗. Con-
sider two possible cases.

– CΦi (O∗) ≥ C∗ for all Ti, i.e., no other vertihub can better accommodate
this request. Then, the request O∗ is removed from O and the algorithm
goes back to step (c) to attempt reallocating the next worst request.

– CΦi (O∗) < C∗ for some Ti. Then, Φ is updated so that the request O∗

is allocated to Ti∗ that minimizes the cost of accommodating O∗, i.e.,
CΦi∗(O

∗) ≤ CΦi (O∗) for all Ti (see Example 5 for an illustrative example
of request reallocation). This iteration finishes and the algorithm starts
the new iteration with step (a). In the case where there are multiple
vertihubs with equal lowest cost C∗, a tie breaker heuristic, e.g., based
on tower id and priority, can be used.

As the number of requests is finite, the cost is non-negative and strictly
decreases in every iteration except the last iteration. Thus, the algorithm is
guaranteed to terminate and output a request allocation that is at least as good
as the initial allocation. This is formally stated as follows.

Proposition 1. Let Φinit be the initial request allocation. Then, the algorithm
terminates with request allocation Φ such that λΦ ≤ λΦinit .

We remark that for ease of presentation the algorithm assumes the vertihub
network is fully connected. In implementation, it is straightforward to modify
the algorithm to directly incorporate the network constraints.
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5 Experimental Results

In this section, we detail the results of a case study implementing the presented
algorithm4. All experiments were run on an AMD Ryzen 5 3600x processor with
6 cores @ 4.3 Ghz and 16 GB RAM. For the purposes of this demonstration, we
use the prioritized safety specifications given in Example 3. We use the toolbox
TuLiP [22] to compute minimally violating traces. We randomly generate vehicle
requests in a format compatible with the Mission Planner Algorithm [10] devel-
oped at NASA Langley. The data contains simulated, timestamped on-demand
requests for origin-destination trips corresponding to vertiports in particular ver-
tihubs. We then run our algorithm to minimally violate the regulations described
in Example 3.

Scalability Figure 4 shows the runtime per iteration per vertihub for different
numbers of total vertihubs as well as the number of iterations until the algorithm
converges. It is clear that the average runtime scales efficiently as the number of

Fig. 4. Worst case runtime per iteration per vertihub (blue) and iterations until con-
vergence (green).

vertihubs increases. In general, the total number of iterations before convergence
also stays relatively constant albeit with a higher variance as the system size
increases. However, since the overall violation of the system’s safety decreases

4 The code for the implementation can be found at
https://github.com/JoeMuff999/Automata-Testing
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with every iteration, in practice, we can always terminate the algorithm after
a certain number of iterations and still have reduced the total violation cost.
We note that even the smallest instance of the problem, i.e., 3 vertihubs with a
maximum of 5 requests was unable to be solved in under 10 minutes using the
centralized method in [20]. Furthermore, these results are a worst-case analysis
as we assume the vertihubs are fully connected, i.e., all vertihubs can transfer
requests to any other vertihub. In practice, the pool of vertihubs that can accept
requests from other vertihubs will be smaller and this will limit the number of
computations needed.

Violation cost To demonstrate the decreasing violation cost, we run our algo-
rithm on the specific case of a 6 vertihub system with 10 requests. As shown in
Figure 5, the initial request allocation has a cost of 11 for the highest priority
regulation. After 4 iterations, the cost has decreased to 0 while the cost for the
second priority regulation stays at 2.

Fig. 5. Violation cost vs iteration for a 6 vertihub system. Total violation, i.e., sum
of the violation of all the individual vertihubs, is shown on top with the individual
vertihub violation costs shown below.

Batch processing The presented method in this paper relies on processing
batches of requests at a time. However, in practice, requests arrive sequentially
in real time. In most cases however, the requests are known in advance and hence



Minimum-Violation Traffic Management for Urban Air Mobility 15

can be planned for. In this result, we demonstrate the effect of different batch
sizes on overall violation cost. The data used in the simulation was generated by
NASA Langley in conjunction with partners performing UAM demand studies.
We divide incoming requests into batches of 5,10,and 15 requests at a time. Each
batch is then processed before moving on to the next batch. We then sum the
total violation cost across all batches for the entire data set. We note that we
only report the level 1 violation cost as the level 0 violation cost is 0 in all cases.

Batch Size Violation Cost Computation time (s)

5 71 6.6
10 63 32.5
15 56 161.9

Table 1. Level 1 violation cost and corresponding average synthesis time per batch
per tower for different batch sizes.

As seen in Table 1, violation cost reduces as the batch size increases. This
result is expected as the smaller batch sizes typically result in myopic plans that
can cause violations down the road. However, it is not necessarily feasible to
plan with large batch sizes as it requires a large look-ahead which may not be
possible in practice.

In this paper, we focus on the decentralization of the minimum violation
planning procedure. Looking forward, we plan to extend the work in this paper
to a real-time planning framework that can resynthesize plans at runtime as
batches of requests arrive in order to avoid violations resulting from myopic
planning.

6 Conclusion

The work in this paper is the first to consider a decentralized minimum violation
planning approach for UAM traffic management. The method is generalizable
and flexible, as it is agnostic to the design of the underlying vehicles being con-
trolled, and it can handle any changes in the safety constraints and still provide
guarantees. Empirical results show the practical viability of our approach and
is able to handle large numbers of connected vertihubs and requests. For future
work, we aim to incorporate online re-planning in order to react to incoming
vehicle requests in real-time and still satisfy regulations as much as possible.
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