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Abstract— We study the problem of analyzing the effects of
inconsistencies in perception, intent prediction, and decision
making among interacting agents. When accounting for these
effects, planning is akin to synthesizing policies in uncertain
and potentially partially-observable environments. We consider
the case where each agent, in an effort to avoid a difficult
planning problem, does not consider the inconsistencies with
other agents when computing its policy. In particular, each
agent assumes that other agents compute their policies in the
same way as it does, i.e., with the same objective and based on
the same system model. While finding policies on the composed
system model, which accounts for the agent interactions, scales
exponentially, we efficiently provide quantifiable performance
metrics in the form of deltas in the probability of satisfying
a given specification. We showcase our approach using two
realistic autonomous vehicle case-studies and implement it in
an autonomous vehicle simulator.

I. INTRODUCTION

Autonomous vehicles offer great promises for improving
transportation safety and efficiency [1], [2], [3]. However,
with the current technology, they tend to be more conser-
vative than the average human driver, leading to instances
of confusion and frustration of human drivers when encoun-
tering an autonomous vehicle. For example, they may lose
patience when an autonomous vehicle precautiously slows
down for potential jaywalkers and try to overtake it danger-
ously. Additionally, slowing down could be misinterpreted
by the potential jaywalkers as giving them the right of
way; thus, encouraging them to cross the road. As a result,
even though autonomous vehicles may directly cause fewer
accidents than human drivers, their conservative behaviors
and inconsistencies with local driving practices potentially
lead to more accidents in the overall transportation networks
since they induce more risky behaviors by other road users,
see the scenarios presented in [4] for additional information.

In their early adoption, autonomous vehicles with different
levels of autonomy and capabilities are likely to share the
road with human drivers. This sharing problem results in a
transportation network where agents with different levels of
autonomy exhibit different behaviors under the same situa-
tion due to differences in perception, intent prediction and
decision making. These inconsistencies may cause confusion
among agents, as evidenced by many reported accidents
where autonomous vehicles were hit from behind [5], [6].

While recent efforts have been devoted to formalizing
specifications of autonomous vehicles [7], [8], [9], the result
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of handling the inconsistency with human driving behaviors
is not well understood. Further, existing approaches for
handling both decision-making [10], [11], and incomplete
perception [12] model the uncertainty in the environment as
partially observable Markov decision processes (POMDPs)
where the agents make decisions based upon their observa-
tions of these effects. In practice, under these approaches
it is not only difficult to find tractable solutions but they
also focus on single agents interacting with uncontrollable
environments. Even the task of verifying that the behavior
induced by a given policy on a POMDP model satisfies a
temporal logic specification is non-trivial [13].

We are interested in the local interaction of agents, which
involves coordinated planning across a system. When the
agents coordinate, the planning problem can be expressed as
the composition of subsystems. While each vehicle is capable
of making decisions independent of the others’ choices,
they are often required to act in a manner that takes into
account the joint action space [14]. If we were to consider a
composed system under the aforementioned approaches, the
natural formal model is a decentralized POMDP. For even
two agents, planning in such a framework is NEXP-complete
[15] and thus completely intractable for any environment.

Therefore for agents to effectively plan when account-
ing for local interactions, they must make some planning
assumptions. With two assumptions, agents can reduce the
planning problem from a decentralized POMDP (DEC-
POMDP) model to a joint, multiple-agent uncertain MDP,
which can be formalized as a single uncertain MDP (uMDP)
whose complexity is NP-hard [16].

First, each agent assumes that the other agents compute
their policies based on the similar objectives (e.g., satisfying
the rule of the road) and based on the same model of the
system. In doing so, they can eliminate the need to account
for decentralized planning. This assumption is not unrealistic
since the objectives of the vehicles typically correspond to
obeying the traffic rules and reaching the destination [8].
While not all the road users follow the rules, it is expected
that the majority do, especially for the rules that are safety
critical such as avoiding collisions, staying in lane, stopping
at a stop line, and giving way to a pedestrian at a crosswalk.
Additionally, even though most vehicles have different final
destinations, those that are traveling in the same direction
typically share the same local destination (e.g., reaching the
other side of the crosswalk, following the road until the
upcoming intersection, etc). When agents make behavioral
decisions, they are typically based on these local destinations,
rather than the final destinations, which are too far for the



agents to anticipate how the world will look like.
Second, we assume that each agent makes a decision

believing that the other agents are subject to the same
uncertainties. This assumption arises naturally from the fact
that each agent cannot access the perception of the other
agents or the true state of the surroundings. In such uncertain
situations, the best each agent can do is to assume that the
other agents see the world in the same way that it does. For
example, numerous accidents involving autonomous vehicles
being hit from behind are caused by this assumption: human
drivers did not anticipate abrupt braking in autonomous ve-
hicles as they see the road as empty [5], [6]. When the agent
assumes that environmental uncertainties at different states
depend on each other, the vehicle can compute a conservative
policy for a uMDP that maximizes the probability of reaching
a safe state [17].

Regardless of the synthesis method, a policy, when applied
to the true instantiation for the uncertain MDP model,
induces a Markov chain which is efficiently verifiable using
probabilistic model checking tools [18]. However, these
assumptions come at a significant cost: namely if the agents
do not agree on the fixed value of the parameter and are
unable to communicate it to each other, the result contradicts
policies that may lead to the agents to unsafe states.

This paper serves as an initial step to provide a quantitative
analysis of the effect of inconsistencies in perception, intent
prediction, and decision making among different agents
on the overall system. In particular, we propose a formal
approach to analyzing the application of policies on the com-
posed system and separately verifying the induced Markov
chain. We demonstrate that the associated cost, or difference
in the probability of satisfying a given specifications, of a
faulty assumption largely depends on the interactions. Fur-
ther, we provide detail on the impact of faulty assumptions
in a realistic simulation environment.

A. Related Work

Existing literature on interacting heterogeneous agents
largely focuses on the synthesis of policies. For example,
[19] formulate the problem as a product MDP and propose
an incremental approach that successively adds agents to the
planning problems up to a computational threshold; [20] syn-
thesize a policy for an agent in a two-player stochastic game;
and [21] decouple the sub-systems based on objectives and
perform compositional reactive synthesis using maximally
permissive policies. However, none of these approaches
address potential assumptions made about the behavior or
intent of interacting agents.

Approaches to incorporate intent from interacting agents,
such as that of human pedestrians [22] or human drivers [23],
rely on partially observable models, which rapidly become
intractable as the number of agents increase. Robust synthesis
methods for uncertain environments, such as [24] and [18],
can tractably handle many agents but do not investigate the
circumstances when the agents disagree on the uncertainty
in their environments.

B. Running Example

Example 1. For the purpose of concretizing the problem
setup, consider a simple car following scenario with a po-
tential pedestrian transitioning a crosswalk shown in Fig. 1.
The system consists of two heterogeneous agents (Aback
and Afront), one of which may be human-driven, and a
stochastically moving pedestrian that will move into and out
of the pedestrian crossing with probability p ∈ [0, 1]. For
every location, each agent has only two action choices (Go or
Stop). In this environment, the trailing vehicle (Aback) may
not pass the leading vehicle (Afront), and the two agents
may not occupy the same location without crashing. The
collective objective is for both agents to successfully transit
the crosswalk at location x3 without occupying the same
location as the pedestrian.

C. Contributions

The key contribution of the paper is a computational
approach to quantitatively answer the two questions: (1)
What price do we pay in the simplifying assumptions to make
the planning problem computationally feasible? (2) Given
the performance of the perception system of the autonomous
vehicle, how safe is the overall system, when the autonomous
vehicle interacts with other (possibly autonomous or human-
driven) vehicles?

II. PRELIMINARIES

A probability distribution over a finite or countably infinite
set X is a function µ : X → [0, 1] with

∑
x∈X µ(x) =

µ(X) = 1. The set of all distributions on X is Distr(X).

Definition 1 (Markov decision process). A (labeled)
Markov decision process (MDP) M is a tuple M =
(S,A, s0, T,AP, L) with finite state S and action A sets, an
initial state s0, a transition function T : S×A→ Distr(S), a
finite set of atomic propositions AP and a labeling function
L : S → 2AP which assigns each state s ∈ S a set of atomic
propositions L(s) ⊆ AP . We assume that the available
actions are the same for every state s ∈ S. In doing so,
we use the shorthand notation to describe the transition
probabilities when taking action a ∈ A as transition matrix
T a ∈ Rn×n. T is the set of all possible transition matrices.
For more detail on labeled MDPs see [25].

A finite path h of an MDP M is a sequence of states;
last(h) is the last state of h and the set of finite paths of

x0 x1 x2 x3 x4

c0

c1

c2

Aback Afront

Fig. 1: Two cars on a straight street with a crosswalk. Agent
Afront is in front of Agent Aback. the composed objective
is for Afront in state x4 and agent Aback in state x3 without
colliding with both the pedestrian and each other.



M is PathsMfin . A Markov chain (MC) D is an MDP with
|A(s)| = 1 for all s ∈ S.

Definition 2 (Uncertain MDP). Let the transition ma-
trix uncertainty set be defined as T ⊆ T, where every
T ∈ T is a transition matrix. An uncertain MDP M =
(S,A, s0, T ,AP, L) is a family of MDPs such that for every
transition matrix T inside of the uncertainty set T is an MDP
M ′ = (S,A, s0, T,AP, L). Similarly, a given uncertain MC
D may form a (finite) family of MCs D, where D ∈ D.

Definition 3 (Policy). A policy π for an MDP is a function
π : PathsMfin → A with π(h) ∈ A(last(h)) for all π ∈
PathsMfin . Let ΠM be the finite set of all policies of M .

Definition 4 (Product MDP). The product automaton of
MDP M1 and MDP M2 is a labeled MDP M1||M2 =
(S,A, (s10, s

2
0), T1,2,AP, L) with a finite composed state

S = S1 × S2 and action A = A1 × A2 sets, a transition
function T1,2 : S1 × S2 × A1 × A2 → S1 × S2, a set of
atomic propositions AP = AP1 ∪ AP2 and a labeling
function L : S1 × S2 → 2AP1∪AP2 which assigns each
product state s = (s1, s2) ∈ S a set of atomic propositions
L(s) ⊆ AP . A policy πi for the composed system M1||M2

can be factored into two separate policies πi|1 and πi|2 that
map πi|1 : PathsMfin → A1 and πi|2 : PathsMfin → A2.

Example 1 (continued). In the simple environment of Fig. 1
each vehicle (Aback and Afront) can be modeled as a two-
action MDP (Mb and Mf ) with initial states of xb0 and xf0
respectively. For each two-action MDP, a policy π maps the
car’s location in the street to an action choice {Go, Stop}.
When we ignore the pedestrian, we can model the system as
the product MDP Mf ||Mb, where the composed state space
S = Sb × Sf is a set of car position pairs for the street.

Definition 5 (Specifications). We define a formal specifica-
tion ψ using linear temporal logic (LTL), which concisely
defines desired system behavior [26]. In this work, we make
use of the LTL operator until U . A path h satisfies (ψ1 Uψ2)
if there is a suffix of h that satisfies ψ2 and all longer suffixes
satisfy ψ1. For full details on the LTL syntax and semantics,
we refer the reader to [25].

Definition 6 (Induced Markov chain). For an MDP M and
a policy π ∈ ΠM , the MC induced by M and π is given by
Mπ = (PathsMfin , A, s0,Pπ,AP, Lπ) where:

Pπ(h, h′) =

{
P(last(h), π(h), s′) if h′ = hπ(h)s′,

0 otherwise,

and Lπ(h) = L(last(h)).

Probabilistic model checking can be employed to for-
mally verify quantitative properties of systems that exhibit
probabilistic behavior [25]. In particular, given a system
modeled by a Markov chain and an LTL specification, it
can compute, in linear time, the probability that the system
satisfies the specification. Probabilistic model checkers such
as PRISM [27] and STORM [28] have been demonstrated

to successfully analyze systems modeled by Markov chains
with billions of states.

III. PROBLEM STATEMENT

Consider a set A = {A1, . . . ,AN} of decision-making
agents. Each agent Ai is modeled by a Markov decision
process Mi. The agents operate in an environment whose
true model DT belongs to the finite family of Markov chains
D. For each agent Ai, let µi : D → [0, 1] be a probability
distribution over D such that for any D ∈ D, µi(D) is the
probability that Ai observes the environment as D.

The objective of the agents is to maximize the probabil-
ity that the complete system satisfies the specification ψ.
However, they cannot communicate with each other and do
not have access to the true model DT of the environment.
Additionally, they do not take into account the probability
distributions µi, i ∈ {1, . . . , N} when computing its policy.
Instead, each agent Ai takes its observation as the true
model of the environment and assumes that the other agent
has the same observation. Formally, suppose agent Ai ob-
serves the environment as Di ∈ D. The complete system,
constructed based on Ai’s observation, is given by Si =
M1||M2|| · · · ||MN ||Di. Let πi be a policy of the complete
system that maximizes the probability that Si satisfies the
specification ψ. The policy of Ai is given by the projection
πi|i of πi onto its action space.

Problem 1 (Analysis of the observation inconsistencies).
Given the models M1, . . . ,MN of all the decision-making
agents, the probability distributions µ1, . . . , µN , the true
model DT of the environment, and the specification ψ,
compute the probability that S |= ψ, where S =
M1||M2|| · · · ||MN ||DT is the complete system, assuming
that the policy of each agent is constructed as described
in the previous paragraph.

Example 1 (continued). Recalling that the two vehicles
(Aback and Afront) can be modeled two-action MDPs (Mb

and Mf ), see Fig. 2 (left). When we include the pedestrian
model, which moves stochastically at each time-step with a
fixed probability p ∈ [0, 1], with the family of Markov chains
D, see Fig. 2 (right). The true model DT corresponds to the
actual value of the pedestrian’s movement probability pT and
thus the complete system S = Mback||Mfront||DT is formed

xbi
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D
Fig. 2: The sub-models for the two car, one pedestrian
crosswalk environment introduced in Fig. 1. The entire
composed model is taken from the product M1||M2||D.
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Fig. 3: For Example 2, the probability of satisfying
¬CrashUG for different policies at initial state (xf0 , c0) of
agent Afront and obstacle D. Policy π refers to the action
taken at state (xf2 , c1), just before the crosswalk.

by the product of the three sub-models in Fig. 2. Meanwhile,
the agents estimate the pedestrian probabilities pb and pf ,
according to distributions µb and µf respectively, which
correspond to models Db ∈ D and Df ∈ D. Additionally,
they synthesize policies according to the systems Sb =
Mb||Mf ||Db and Sf = Mback||Mfront||Df

IV. POLICY ANALYSIS

In this section, we describe the process for performing
analysis on the composed system whereby policies are im-
plemented based upon the assumptions made by the agents.

A. Analysis for a Composed System

Consider a composed system S for set of decision-making
agents A and a corresponding set of policies {π1, . . . , πN}.

1) Policy Splitting: Agent Ai’s policy πi represents a
composition of individual policies of all N agents: πi :
||j=1:Nπi|j where πi|j is the projection of policy πi under
Agent Ai’s assumption on the decisions of Agent Aj . Agent
Ai operates under the assumption that the other agents
are also implementing πi and therefore implements πi|i.
Each agent builds policies the same way and therefore, the
implemented policy π can be described by π : ||j=1:Nπj|j .

2) System Analysis: Finally, we analyze the probability
Pr(SπT |= ψ) that true composed system ST satisfies spec-
ification ψ, which is dependent on the finite nature of the
policies. By taking sample instantiations for each agent Ai,
according to µi and using probabilistic model checking [28],
we generate a set of benchmarks or quantitative regions for
parameter values similar to those shown in Fig. 3. Using
these benchmarks, we determine the relevant assumptions
to satisfy the specification and those with limited impact.
An example is the inflexion point at p = 0.5 in Fig. 3,
where an instantiation pi < 0.5 has a different policy to
instantiation pj > 0.5. If we require the probability of the
composed system is above λ = 0.5, then the policy satisfies
this require if the parameter p < 0.33 or p > 0.66 Here,
these benchmarks refer to both the inflexion points and also
the parameter values that lead to the highest probability of
satisfying policies.

B. Finite Policies for Large Model Sets

Example 2. First, consider a slight modified version of
Example 1 with only a single carAfront, which also attempts
to transit a crosswalk without hitting the pedestrian.

For each simulation there exists a true model DT , which
accurately describes the value of p, and one agent Afront
makes an assumption about the value of p and plans ac-
cording to their belief of the model Di. In this example,
the set of pedestrian models D is uncountably infinite while
for the agents there exists a finite number of deterministic
policies. The agent’s goal is to reach location xf4 without
crashing, which occurs if the car shares the same location
as the pedestrian, which is state (xf3 , c1) in the composed
system Mf ||DT .

Now we consider when the vehicle attempts to success-
fully navigate the crosswalk with 0.65 probability, i.e. we
seek to satisfy the specification ψp = Pr≥λ(¬CrashUG)
where λ = 0.65. The policy that optimizes reachability is
dependent on the value of parameter p. Here, the optimal pol-
icy takes two forms depending on one of two different action
choices at critical state state (xf2 , c1), prior to crosswalk and
obstacle at the edge. At state (xf2 , c0), the optimal policy
requires selecting action Go1 for the case where p < 0.5
and Stop1 otherwise. Fig. 3, shows for which values of
p ∈ [0, 1] this policy satisfies the specification ψ. For any
distribution µ, there exists a piecewise linear and convex
(PWLC) function π that finds a locally optimal policy for
maximizing probability of satisfying the specification [29].
Consequently, even though the number of obstacles models
is large, the set of possible policies for this state is finite
regardless of the value of p.

V. SYNTHESIS OF COMPOSED SYSTEM

The focus of this work is the verification framework,
which is independent of any policy synthesis method. For
comparative purposes, we present an example approach
to multi-agent synthesis that operates under the described
assumptions on agent behavior. While we can verify a given
policy applied to a system in linear time [17], the policy
synthesis problem is NP-Hard [30]. Example 2 describes
a single agent composed with the obstacle model; we now
describe the policy synthesis process for multiple agents.

Example 3. Consider agent Afront and its observation of
the environment Df ∈ D according to µi. The state space
for system Sf can be represented by a tuple of the vehicles’

Problem type
(N ,m)

States in
Composed System

Time for
Synthesis (s)

Time for
Verification (s)

Crosswalk 63 2.11 × 10−3 4.40 × 10−4

Gridworld (2,3) 365 0.55 8.82 × 10−2

Gridworld (2,4) 3352 4.52 0.59
Gridworld (2,5) 8672 23.95 1.11
Gridworld (2,6) 17541 603.95 37.39
Gridworld (3,4) 5188 453.34 3.62
Gridworld (3,5) 187522 5104.01 100.32

TABLE I: Average computation time for composition and
verification of different sized environments.
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Fig. 4: Analysis process for agents performing synthesis.

locations in their sub-models (xfi , x
b
i , ci) ∈ Sf × Sb × Sc.

We synthesize a policy πf for the system Sf such that
Prmax(Sf |= ψp). In doing so, agent Afront assumes
that agent Aback chooses its action according to πf |b. i.e.
that the other agent observes the environment as Df . This
process is repeated for the back agent Aback and environment
observation Db for policy πb|f .

a) Extension to general number of agents: Similarly
we can be extend Example 3 to the general set of agents
A, where for example agent A1 observes the environment
as D1. Subsequently agent A1 assumes that every agent
Aj ∈ A makes choices according to π1|j , i.e. that every other
agent also observes the environment as D1. This process can
than be repeated for every agent Ai ∈ A and environment
observation Di ∈ D until policies πi|j for all combinations
of i and j are obtained.

b) Synthesis using model checking: For each agent
Ai, probablisitc model checkers such as STORM [28] or
PRISM [27] can compute the policy πi that maximizes the
probability of satisfying the specification Prmax(Si |= ψ).
These tools compose the system Si and specification ψ into
an analyzable model, which can then reduce the synthesis
problem to either a linear program or a binary decision
diagram [31].

As described in Example 2, if one takes enough sample
instantiations from the distributions µi and µj then we
can deduce the locations for which the differences between
synthesized policies πi and πj are suboptimal (red region in
Fig. 3), for additional information see [17]. In this work, we
show that this assumption-based approach to synthesis leads
to sub-optimal outcomes. In Fig. 4, we describe the analysis
algorithm. Each agent observes the environment, collecting
a Markov chain D, they then sythesizes a policy that feeds
into the composed system S. Finally, we verify the composed
system S against the specification ψp.

VI. CASE STUDIES

In this section, we explore a set of case studies that
quantify the effect of making faulty policy assumptions.
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Fig. 5: Probability that system S with pT = 0.75 for
pedestrian model DT satisfies the specification. 100 samples
were taken, where µ was a uniform distribution for all agents.
Verification of the composed systems reveals three level sets
of probabilities that correspond to four regions under the
policy assumptions {R1, R2, R3, R4}.

The settings chosen range from a simple pedestrian cross-
ing to a scalable gridworld environment with a gen-
eral number of agents. To synthesize and evaluate poli-
cies, we implement a Python toolchain that employs the
probabilistic model checker STORM [28]. We performed
all analysis on a 1.9GHz machine with a 12GB mem-
ory limit. All code used to generate and verify policies
can be found at https://u-t-autonomous.github.
io/heterogenous_assumptions/ .

a) Toolchain description: For each sample point in
Fig. 5 and Fig. 7 (corresponding to an instantiation of the true
system ST ), we instantiate N environments based on each
agent’s observations, which gives a set of N values for each
parameter and a set of corresponding set of Markov chains
{D1, · · · ,DN} ⊂ D. In parallel, for each agent Ai ∈ A
and system Si we synthesize a policy πi using STORM’s
sparse engine [31], which formulates the MDP as a set of
linear equations and finds the optimal action choices for
maximizing the probability of satisfying the specification ψ.
Once we have obtained a policy for each agent, we extract
and apply each policy πi|i on the true system ST by
constructing MC SπT . We then verify, again using STORM’s
model checker to provide a quantative performance metric
on the policy assumptions made for system ST in the form
of the probability of satisfying the specification Pr(SπT |= ψ).

b) Model checking and verification: We present the
model sizes, average times for synthesis, and verification for
both sets of case studies in Table I. Note that the synthesis
method scales exponentially with the number of agents and
is used to demonstrate the efficiency gained by the proposed
approach to verification on the sampled distributions.

A. Pedestrian Crossing

Returning to the scenario presented in Fig. 1, the com-
posed system has a goal state of G : xf4∧xb3 and additionally,
a crash occurs if the agents occupy the same space or the
same space as a pedestrian, given by Crash : (xb3∧c1)∨(xf3∧
c1)

∨4
j=1(xbj ∧x

f
j ). The vehicles attempt to find policies that

satisfy ψp = ¬CrashUG. Each agent, makes an assumption
of the pedestrian model pb and pf forming Db and Df
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Fig. 6: City grid environment with m number of cars.
Included are two examples of possible operating regions
for the construction crew with the true region (yellow) and
region shifted in x (green). Each grid location represents an
intersection for the vehicle to navigate.

respectively. After making this assumption, the agents then
synthesize a strategy for the composed system Mb||Mf ||Di.

a) Result: Fig. 5 shows the differing outcomes depen-
dent on the agents’ assumptions. As described in the one
car case, there exists a policy inflexion point at p = 0.5
(see Fig. 3). Consequently, we can separate the policy space
into quadrants based on the values of pb and pf . When both
probabilities agree with the true model, the implemented
policy maximizes the probability of satisfaction (see R1 of
Fig. 5. When the probabilities are inconsistent with the true
model, a crash is not necessarily guaranteed – especially if
the front agent Afront is less conservative, i.e. it assumes that
pf < 0.5, which means it will choose Gof more frequently
than Stopf (R2 for example).

b) Simulated Environment: We simulate these policy
constructions for different example instantiations on the
open-source simulator CARLA [32]. We run CARLA 0.9.10
on a 3.1 GHz machine with a GeForce RTX2060 graphics
and 32GB of memory. In CARLA, the car identifies the
pedestrian waiting at the edge of the crosswalk but we
assume that the sensors are not capable of perfectly observing
the pedestrian’s intent to cross the road. We simulate the
car’s observation of pedestrian intent from the distributions
µb and µf , which reflect the simulated sensor uncertainty.
The observations give two instantitions of Df and Db, which
we can efficiently and in real-time (see Crosswalk in Table I)
synthesize policies using the STORM toolchain described
earlier. We include an example run in the video attachment.
In this example, the front car acts according to the belief
that the pedestrian will not cross with high probability
and therefore goes through the intersection. Meanwhile, the
back car believes that the pedestrian will cross with high
probability and therefore assumes the front car will stop.
This run would constitute a sample taken in the region R2.

c) Comparison to parametric synthesis: We can re-
frame the model as the composition of two uncertain MDPs
(Mb||Db)||(Mf ||Df ), each with a transition matrix uncer-
tainty set dictated by the parameters pf and pb. In this
framework, the composed model has 2 parameters with
361 states. Storm’s integrated parametric model checking
solver can efficiently solves such a model in approximately

5× 10−3 seconds. The output policy for every instantiation
of pf , pb ∈ [0, 1] induces a Markov chain that would put
the reachability in the level set with the same value of R1.
However, as described in the introduction, the back car does
not have access to the instantiation of the front car and vice
versa, which does not make this approach a fair comparison.

B. Scalable Fleet in City Streets with Blockages

We describe a case involving a fleet of vehicles navigating
a city with a grid structure. This environment can be modeled
as a gridworld where an individual square represents an
intersection. For this example, we assume that the vehicles
can choose to move in any direction at equal cost at each
intersection, i.e. U-turns are legal.

Additionally, in this city environment, there exists a
moving construction crew that occupies one intersection
at a given time. The construction crew has a restriction
on its region of work, which is not directly known by
the vehicles themselves, see shaded region in Fig. 6. Each
vehicle assumes what this operating region could be from
a distribution over two parameters p(X,i) ∈ [0, 1] and
p(Y,i) ∈ [0, 1]. For example, in Fig. 6 a value of p(X,i) = 1
means that Agent 1 believes that the construction crew is
operating in the yellow region with probability 1. Further,
a value of p(X,i) = 0 means that with probability 1 the
construction region will be shifted to the left in the x
direction (green area in Fig. 6). Similiarly p(Y,i) represents
the shift probability of the construction region in the y-axis.
Further, we assign the initial positions of the vehicles from
west to east along the south end of the city and their goal
locations are mirrored from the initial positions along the
north end of the city. If a vehicle Ai ∈ A occupies the same
physical location as the construction, we consider it Stucki.
Additional each vehicle has a target location at Gi The
objective ψg for the composed system S can be expressed
as ψg = ¬

∨
Ai∈A Stucki U

∧
Ai∈AGi.

a) Result: Fig. 7 shows the impact of the agents’ as-
sumptions on the construction zone. In the two-car example,
when the leading agent A2 makes the correct assumption on
the construction zone, the synthesized policy has the maxi-
mum reachability. This behavior is a result of the fact that
agent A2’s behavior has more impact on A1 than vice versa.
Similarly, even if agent A2 assumes incorrectly (Regions
R2 and R5), the two cars will not crash into each other
if the trailing agent A1 makes the correct assumption and
thus behaves conservatively with respect to the construction
crew.

VII. CONCLUSIONS

This paper presented a comprehensive approach using
probabilistic model checking to quantify the impact of in-
consistencies in perception, intent prediction, and decision
making among different agents in heterogeneous multi-agent
systems. By focusing on the case where agents do not
consider these inconsistencies in order to maintain com-
putational tractability, we demonstrate that such incorrect
assumptions can result in the overall system’s failure to
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Fig. 7: Two agent (A1 and A2) instance of fleet, we show the probability of satisfying the specification based upon shifts
in construction region in x and y. The true region is the 2x2 yellow shaded region in the northeast corner of Fig. 6.

meet its specifications. In providing simple, but illustrative
case studies we show these faulty assumptions can manifest
in real-world scenarios. Moving forward, the research aims
to extend its investigation by exploring the modeling of
assumptions under partial observability and quantifying the
effects of divergent beliefs among interacting agents. These
future directions will contribute to a deeper understanding
of the challenges associated with multi-agent autonomous
systems and pave the way for more robust and reliable
approaches in the design and deployment of autonomous
technologies.
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