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Abstract We describe the development of our autonomous personal vehicle
that attempts to provide mobility on demand service to address the first-
and last-mile problem. We discuss the challenges faced for such a system in a
campus environment and discuss our approach towards mitigating them. The
autonomous vehicle has operated over 30km of autonomous operation in a
campus environment interacting with pedestrian and human driven vehicles.

1 Introduction

As the use of private vehicles starts approaching its limits to effectively meet
the demand for personal mobility in densely populated cities, mobility-on-
demand systems emerge as a more economical and sustainable alternative
[3]. These systems rely on the deployment of a fleet of vehicles at different
stations that are distributed throughout the city. The customers simply have
to walk to a station near their origin, pick up a vehicle, drive it to the station
near to their destination and drop it off. Electric ultra-small vehicles or bi-
cycles may be utilized for systems that primarily aim at serving short trips.
Such systems can supplement and stimulate the use of public transport by
providing a convenient mean for the first- and last-mile transportation (e.g.,
from home to a transit station and back); thus, improving public transporta-
tion accessibility. The feasibility of mobility-on-demand systems that employ
traditional bicycles has been demonstrated in many cities [1].

Z. J. Chong, B. Qin, M. H. Ang Jr.

National University of Singapore, e-mail: {chongzj, baoxing.qin, mpeangh}@nus.edu.sg
T. Bandyopadhyay , T. Wongpiromsarn, B. Rebsamen, P. Dai

Singapore-MIT Alliance for Research and Technology, Singapore, e-mail: {tirtha, nok,
brice, peilong}@smart.mit.edu

E. S. Rankin

DSO National Laboratories, Singapore, e-mail: erankin@dso.org.sg



2 Z. J. Chong et al.

One of the main challenges in managing mobility-on-demand systems is
in keeping a balanced distribution of the vehicles among different stations
to ensure minimal waiting time for the customers at sustainable cost. This
problem is critical especially for the cities where some origins and destina-
tions are more popular than others, leading to an unbalanced distribution of
the vehicles throughout the city. Hence, most of the existing vehicle sharing
systems only offer round-trip service, forcing the customers to return the ve-
hicle only at their origin. In [2], an optimal, real-time rebalancing policy that
determines a proper distribution of the vehicles in the anticipation of future
demand is proposed. However, a means of transporting the vehicles for the
re-balancing trips remains an open problem. In this paper, we propose the use
of autonomy to implement the proposed policy and allow efficient operation
of mobility-on-demand systems and enable a one-way vehicle sharing option.

Autonomy can play an important role, not only for the re-balancing trips
but also for transportation from a pick-up point to a delivery point. This
allows the customers to be picked up at their actual origin or dropped off at
their actual destination, instead of requiring the customers to walk to or from
a station. This problem is closely related to Dynamic one-to-one Pick-up and
Delivery problems [4, 5]. We show how this can be accomplished in a fully
automatic manner without any human assistance.

Our system aims at providing transportation over a relatively short dis-
tance. In particular, the vehicles mainly operate in crowded urban environ-
ments that are typically equipped with sensors on the infrastructure including
cellular networks, traffic cameras, loop detectors and ERP (Electronic Road
Pricing) gantries. The detailed road network and many features of the en-
vironment in which the vehicles operate can also be obtained a priori. As
opposed to existing autonomous vehicles such as those in the 2007 DARPA
Urban Challenge and Google driverless car [6], we take a minimalistic ap-
proach and exploit the prior knowledge of the environment features and the
availability of the existing infrastructure to ensure that the system is eco-
nomically feasible.

The rest of the paper is organized as follows. Our mobility-on-demand
system is described in Section 2. Section 3 describes our autonomous vehicle,
including both the hardware and software components. The operation of the
system is demonstrated in Section 4. Finally, Section 5 concludes the paper
and discusses future work.

2 Mobility-on-Demand System

The components of our mobility-on-demand system is shown in Figure 1.
First, the customers may request or cancel services, specify their pick-up and
drop-off locations and view useful service information through a personal
electronic device such as a smart phone or through our web interface. Sample
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The service requests and cancellation are then added to the SQL database
on our server. A scheduler, which is the main component of the server, inter-
acts directly with the database. It determines the order in which the requests
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will be serviced and assigned each request to a vehicle. Once the assignment
is made, the scheduler populates the database with useful service information
such as service status, expected waiting time and the vehicle that is assign
to each request. This service information will be transfered to the customers
through our web API. The server also communicates with each vehicle to ob-
tain its current status and provide the information about its next task (e.g.
pick-up and drop-off locations of the next customer the vehicle is supposed
to serve).

A vehicle completes each task as follows. First, it has to drive au-
tonomously to a specified pick-up location, come to a complete stop and
wait until the customer successfully boards the vehicle. It then goes to the
drop-off location. The task is completed when the vehicle reaches the drop-
off location, comes to a complete stop and after the customer alights. The
vehicle may not start the next task until the current task is completed. More
detail on the autonomous operation of our vehicles is provided in the next
section. Lastly, a human operator may monitor, add, cancel and modify ser-
vice requests and access the status of each vehicle through our secure web
interface (Figure 2b).

3 Autonomous Personal Transporter

Current configuration
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Fig. 3: Autonomous vehicle hardware architecture.
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3.1 Hardware Architecture

Our platform is based on a Yamaha G-Max 48 Volt Golf Car G22E. It has a
seating capacity of 2 persons with maximum forward speed of 24 km /h. Cur-
rent setup of the platform is shown in Figure 3 which features the placement
of sensors and other hardware. The multifunction frame structure provides
flexible sensor configuration which allows changes to the sensors configura-
tion to be done quickly and easily. All hardware are powered by the onboard
6 x 8V US 8VGC deep cycle batteries. Some of the devices which requires
AC, i.e. computers and motors get the power supplied from an inverter which
draws power directly from the onboard batteries.

Actuators

The golf car has been modified to be able to drive by wire for computer
control. An AC motor is connected to the steering column by bevel gear to
enable automatic steering. It is designed such that the bevel gear can be
disengaged to allow switching back to manual driving. Another AC motor
is fitted near the brake pedal to actuate the brake directly. Finally, direct
electronic interface into the throttle signal is made to achieve complete control
of the vehicle’s speed and direction.

The low-level controls, which comprise the controls of steering, throttle
and brake, are handled by a realtime system to provide necessary signals as
required by different actuators. The 2 AC motors have been configured to
receive pulse signals with position controls similar to a stepper motor where
the amount of rotation is proportional to the number of pulses. On the other
hand, a PWM signal of 3.3 V is used for the throttle to regulate the speed of
the vehicle.

Sensors

Both rear wheels of the golf car are mounted with encoders that provide
an estimate of the distance traveled. An Inertial Measurement Unit (IMU)
MicroStrain 3DM-GX3-25 is mounted at the center of the rear axle to provide
attitude and heading of the vehicle. The encoders and IMU are combined to
provide odometry information for the vehicle in 6 DOF.

For external sensing, a variety of LIDARs are used. There are 2 SICK
LMS 291 mounted in front of the golf car. The SICK LMS 291 provides
a single plane range measurement of 180 degree field of view. Both of the
LIDARs are connected through USB-COMi-M, which enables high speed
connection to the LIDARSs, providing measurement rate at 75Hz with 0.25
degree of resolution. The top LIDAR is mounted horizontally to provide
measurements of stable building features to allow accurate localization within
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Fig. 4: Overview of the software modules implemented on the autonomous
vehicle.

a known environment. The second LIDAR is mounted looking downward and
is used to detect the curb lines along the road for navigation purposes.
Additionally, a 4-layer LIDAR, SICK LD-MRS400001 mounted at the
waist level provides additional information about the environment. The data
returns at the rate of up to 50 Hz with the total operating angle of 110 degree.
Just on top of the LIDAR, a USB camera Logitech HD Pro Webcam C910 is
placed. The camera is calibrated with the 4-layer LIDAR to provide pedes-
trian detections. The combination of LIDAR and camera is with the objective
of extracting each sensor’s different capabilities to achieve a robust detection
system. This way, the excellent tracking performance of the LIDARs and the
ability of vision to disambiguate different objects can be fully utilized.

Computing

There are 2 regular desktop PCs fitted with Intel i7 quad-core CPUs and in-
terface card. All computers run Ubuntu 10.04 with Robot Operating System
(ROS) installed. One of the computers is installed with RealTime Applica-
tion Interface (RTAI), a real-time extensions for Linux Kernel to provide the
low level control to the steering, brake and throttle of the golf car. Modular
software architecture has been developed for ease in incorporating additional
functionality without modifying the core system, as detailed in the next sec-
tion.
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3.2 Software Architecture

Figure 4 shows a high level view of the software components currently setup
in our vehicle. In the following we briefly describe the navigation, localization
and perception module.

Navigation module

Since the vehicle navigates on a known road network, all routes from any
origin to any destination are generated a-priori as a set of waypoints. The
choices of routes are made online depending on the request from the mobility
on demand scheduler. The obstacles detected from the sensors are incorpo-
rated as a rolling cost map centered on the vehicle. The cost is propagated
radially outward with an exponential function. At the low level, speed and
steering control are separated. For the speed control, the vehicle considers
the following input before planning for next action: the average cost function
that is present within a defined area in front of itself and the curvature of the
path [7]. The waypoint follower is implemented using a pure pursuit control
[9].

Localization

Localization is very important for autonomous navigation. Most of the pop-
ular approaches for localization in autonomous navigation outdoors depend
heavily on GPS based localization. In fact the DARPA challenge was based
on GPS based waypoints as input. However, GPS is not very reliable in urban
areas due to satellite blockage and multi-path propagation effect caused by
tall buildings. An alternative approach to using GPS is to generate a high
fidelity map of the area to be navigated using a high resolution range scanner.
This approach is used by Google driverless car where the car, mounted with
high fidelity Velodyne 3-D range sensor collect data of the road networks
from various runs. Subsequently, when the vehicle travels it matches scans
from its range sensors to the collected data and infers its location. However,
collecting such a-priori information requires significant investment in terms
of cost and manpower.

In line with our vision of lowering the cost of the autonomous vehicle, we
use a single 2-D range sensor to detect roadside curb features. We use Adap-
tive Monte-Carlo Localization scheme to match the detected curb features
to a road network map known a-priori. Figure 5 shows the basic components
of this algorithm. This algorithm is tested through experiments in the cam-
pus environment as seen in Figure 6(a). A snapshot of the result is shown
in Figure 6(b), where our vehicle drives from starting point S to goal point
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G. We can see that our curb based localization (shown in red) outperforms
odometry (shown in yellow) and GPS based localization (shown in green).
The errors in location estimate are plotted in Table 1. It can be seen
that position error of our algorithm is usually small, less than 0.6 meter;
and the orientation estimation is quite accurate, less than 3 degrees to the
ground truth. From Table 1, one can also observe that position errors at some
critical points of intersections and turnings (like A, C, D, F) are much smaller
than that of the straight road (like B). Fig. 7 shows “estimation variance”
vs. “driving distance” in road longitudinal and lateral direction. It can be
concluded that, while curb features on straight roads help to estimate the
lateral position, the intersection and tightly curved curb features contribute
very much to the longitudinal positioning. In our operations, we augmented
the curb map with patches of laser map in areas where curb information was
not available, e.g. pick up and drop off lobbies. Details are mentioned in [8].

Table 1: Localization error at several marked points

Marked Points A|lB|C|D|E|F|G
Position Error (m) |0.20|0.55/0.06(0.20{0.32{0.06{0.08
Orientation Error (deg) <3
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Fig. 8: Vehicle navigating the dynamic environment.
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Perception

For autonomous driving, having a good perception of moving objects on the
road is extremely important. Figure 8 shows a typical scenario the vehicle
has to navigate in. The problem of detecting pedestrians, moving vehicles and
static obstacles in cluttered, dynamic and time-varying lighting conditions is
extremely complex. In addition, often the on-board sensing is occluded due to
the presence of big trucks, buses or other environmental features. While vision
systems can detect features more reliably, often ascertaining the distance of
the features becomes difficult. On the other hand, while the laser range finders
are quite accurate in detecting the distance to the obstacle, they are not well
suited to disambiguate similar shaped obstacles like moving pedestrians or a
static lamp-post.

We use a the combination of a single laser range finder and a simple web
camera calibrated properly to detect pedestrians on the road. Figure 9 shows
the basic components of the pedestrian detection algorithm. The laser clusters
the sensor information based on the proximity, and the corresponding sub im-
ages are sent to a HoG SVM classifier to detect a person. A resulting snapshot
of the vehicle while in operation is shown in Figure 10(a), where pedestrians
are boxed. Fig.10(b) shows the number of objects tracked by LIDAR, pedes-
trians verified by webcam, and the ground truth number of pedestrians. In
the test, most pedestrians got detected, whether as an individual, or as a
group, making safe autonomous driving of our vehicle. Frequency of this de-
tection system is up to 37Hz, limited by scan frequency from LIDAR. Range
of effective detection is about 15 meters, limited by resolution of webcam.
Details of the algorithm and implementation can be found at [7].
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4 Demonstration
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Fig. 11: Route of the autonomous vehicle.

The autonomous vehicle covered over 30km autonomously in the engi-
neering section of National University of Singapore (NUS) campus, the route
as shown in Figure 11. The selected route has representative segments of
a typical road network, while being on campus the vehicle has to be more
conservative in dealing with incoming student pedestrians and other vehicles.
There are 4 pickup and drop off stations present in this section of the campus.
The customer requests a pickup and drop-off location from either the mobile
phone or the web interface shown in Figure 2. It is able to detect pedestrians
and other vehicles and safely stop when the pedestrians or the vehicles are
within a safety threshold along the vehicle’s immediate path, preventing any
collision. The videos of the operation are uploaded at (http://bit.ly/xiJDmZ).

5 Conclusion and future work

In this paper we present an autonomous vehicle implementing mobility on
demand in a campus environment. Successful operation of the system has
been demonstrated where the customers request mobility service and vehicle
autonomously picks them up from their desired origin and drops them off at
their requested destination.

We are currently incorporating mechanism for the vehicle to interact more
meaningfully with other vehicles and pedestrians on the road, to predict
their intentions and generate decisions accordingly. We are also including ad-
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ditional personal transport platforms to utilize multiple autonomous vehicles
in our mobility on demand setup. We are also looking into incorporating
infrastructure sensors to augment the vehicle’s perception.
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