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Abstract. Robot navigation in urban environments requires situational reason-
ing. Given the complexity of the environment and the behavior specifiethb

fic rules, it is necessary to recognize the current situation to impose trecto
traffic rules. In an attempt to manage the complexity of the situational meagso
subsystem, this paper describes a finite state machine model to govesit the
uational reasoning process. The logic state machine and its interaction with th
planning system are discussed. The approach was implemented onT&lica,
Caltech’s entry into the 2007 DARPA Urban Challenge. Results from the qua
ifying rounds are discussed. The approach is validated and the shéantyof

the implementation are identified.

1 Introduction

The problem of robot navigation in urban environments haently received substan-
tial attention with the launch of the DARPA Urban Challen@&JC). In this competi-
tion, robots were required to navigate in a fully autonommasiner through a partially
known environment populated with static obstacles, liafitr, and other robots. In or-
der for the robot to complete this challenge, it needed teedsn urban roads, navigate
intersections, navigate parking lots, drive in unstrustinegions, and even navigate un-
structured obstacle fields. Since the environment was catiyglly known prior to the
race, the robot needed to rely on sensory information t@ekthe world state, which

Fig. 1. Alice (left), Team Caltech’s (right) entry in the 2007 DARPA Urban Chalkeng



introduces additional uncertainty into the problem. Feamthore, lack of exact knowl-
edge about the robot’s location and the state and intentredmjc obstacles introduced
further uncertainty. Lastly, the robot needed to obey Gatifa traffic rules or exhibit

human-like behavior when this was not possible.

The urban component of the problem had two effects on thetioplanning prob-
lem: first it introduced some structure into the environmntéiat could be used during
the planning process. Second, the traffic rules associataduvban driving forced the
robots to exhibit specific behaviors in specific situatioftsese behaviors are at a high
level associated with the driving task that is being exeutdnich include, for example,
driving on a road versus driving in a parking lot. While exéogta driving task, it is
necessary for the vehicle’s control system to reason abbighwraffic rules are appli-
cable at each instant. It was not sufficient to obey all thegall the time, but in some
cases constraints needed to be relaxed for the robot to raekarfl progress. This rea-
soning module is what is presented in this work. A relatedeesspf urban driving is
intersection handling [1] and is not discussed here.

Prior work has attempted to solve the problem of reasoniogighe robot’s correct
driving behavior. Most of the work has been related to highddving, and deciding
when a maneuver such as a lane change or emergency maneuverdsr [2-5]. One
practical hurdle is managing the complexity of the decisizaking module [2] which
must decide which rules to enforce and which actions to tAkether problem is tak-
ing uncertainty about the situation into account. Suktlaargt al. [2] implemented a
scheme based on a voting system, called polySAPIENT. Riffietraffic objects in the
environment (for example another car, an exit on the highwéy) would vote for
the appropriate action. Using a mitigation scheme, the detsdn was chosen. Unsal
et al. [3] used automata theory for longitudinal and lateaitrol of the vehicle, and
implicitly chooses the best action. Gregor and Dickmanijsugéd a finite state ma-
chine (FSM) to decide. Niehaus and Stengel [5] explicitlgant for uncertainty in a
probabilistic fashion, and use a heuristic method to séfecbest action.

The main contribution of this paper is the design of a denisimdule for a robot
navigating an urban environment. To manage complexity,tfodule does not attempt
to explicitly reason about all aspects of the environmaeuttjistead makes use of infor-
mation generated by the path-planning module to guide id@sisThe decision module
was implemented on Alice, the Team Caltech entry into the [j$#@ figure 1). Results
obtained during successful DUC qualifying runs are preserithe paper is structured
as follows: the overall planning approach is briefly revidwe section 2, before fo-
cussing on reasoning in the logic planner (section 3). Amgta is given to illustrate
usage. Lastly, some results from the qualifying runs forDkkC are presented, with a
discussion, recommendations and future work.

2 Overview of Planning Approach

The planning problem involved three driving tasks: roadidg, off-road driving, and

parking lot navigation. In an attempt to modularize the systfor rapid development,
the problems of sensing, planning, and control were sepdirdhe planning problem
itself was divided into three layers (see figure 2), follogvilhe hierarchical architec-



Route RNDF Mission Level

planning Static obstacle data
I T e T T T Tactical Level

Logic [PPEM [ paty | PEN_f veiogity |2 [ Trajectory
Planner planner planner evaluation

- % _____ —_ _ _ EF_T L 7'.
|Dynamic obstacle data -_’
Controller [
| Controller [—s

Fig. 2. Planning architecture showing 3 layers used for planning process.

ture dictated by the contingency management approach thatagdopted for overall
management of Alice’s activities [6].

At the mission level, it was necessary to generate a routrigfr the road net-
work, as defined by DARPA through the Road Network Definitidle FRNDF). The
route planner would specify a sequence of road segment théscompleted, which
would be passed to the tactical planning layer. The tagtizaner was responsible for
generating a trajectory to some intermediate goal (e.gos#ipn at the end of a road
segment). The reasoning methodology used by the tactigahpt is the focus of this
paper. The trajectory generated in the tactical plannerimvagn passed to a low-level
trajectory-following controller, which is documented if

The tactical planner consisted of four parts:

Logic Planner: The logic planner was the reasoning module of the robot. maidule
had two functions: reasoning about the current traffic sitma and reasoning about
intersections [1]. This planner was implemented as a senité itate machines (FSMs)
and would set up a planning problem to be solved. Reasoniogt abe current traffic
state is the focus of this paper.

Path Planner and Velocity Planner: The trajectory planning problem was separated
into a spatial and a temporal planning problem in order tgéfgnthese planning prob-
lems, and to satisfy the real-time requirement of the planBeparate path planners
were implemented for the three different driving tasks. Sehpath planners were re-
sponsible for solving the 2-D spatial path planning prohlascounting for the static
component of the environment. The velocity planner timeapeeterized the path to ob-
tain a detailed trajectory. This velocity planner adjudtesirobot’s speed for stop lines
along the path, static obstacles on or near the path, thatcwevof the path, and the
velocities of dynamic obstacles.

Trajectory Analysis (and Prediction): Navigating in urban environments requires the
incorporation of the (predicted) future states of dynantistacles in the planning prob-
lem. Prediction involves two estimation processes: ptediche behavior of the dy-
namic obstacle, and predicting the future states of therdjmabstacle. This informa-
tion can be compared to the robot’s planned trajectory teadtiture collisions. The
generation and use of prediction information will be presdrelsewhere.

An important part of the navigation problem was contingemanagement and in-
ternal fault handling. The hierarchical planning architee lined up well with the conti-
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Fig. 3. Example problem: the travel lane of the robot is blocked. Using the fadtitbe path
planner, the logic planner infers that the lane is blocked and relaxes th&édaping constraint.
This allows the robot to execute a passing maneuver.

gency management philosophy that was adopted. The CahSoiftevare Architecture
was adopted, where each module handled its internal faudtshee failures propagated
from the lower-level modules. When the module could not reecgoal, it would fail
to the level above, which would adjust the goal. A complinagptdetailed discussion
of contigency management has been presented in [6].

3 Situational Reasoning with the L ogic Planner

Situational reasoning is necessary to impose both thectrafés, and the correct behav-
ior when rules need to be relaxed. For the highway driving che environment is very
structured, and the behavior of the other dynamic agentsitggt be encountered by
the vehicle is relatively constrained, yet the complexityhe reasoning modules was
a problem. One reason for this complexity is because theskile® attempt to reason
about all components of the environment abstractly. Fomge, the reasoning module
would need to obtain a list of obstacles in the robot's vigirand reason about their
position (e.g., in lane) in the environment, the contexy.(estatic obstacle blocking
the lane) and how that may affect the robot (e.g., need togeghlemes). Alternatively,
much information is obtainable from the path and velocignplers, and could be used
to guide the decision process. For example, when the pating@tecould not find a
collision-free path, an obstacle must be blocking the Idigs information could be
returned to the reasoning module via a status message, 3¥,used in the decision
making. Decision making was avoided while things were ragrsimoothly. For further
simplicity, the reasoning module was reduced to a finiteestachine (FSM).

Example: To understand the reasoning approach, it is useful to loak axample (see
figures 2 and 3). Consider the case of the robot driving dowvoalane, two-way road
segment.

Cyclek-1: From the previous planning cycle, no problem was detectethipycom-
ponent of the tactical planner. Imagine now that a statidamths is detected in the
robot’s driving lane.

Cycle k: The path planner cannot find a collision-free path that stayke lane
and reaches the goal location. The planner reports thesstadd = COLLPATH,
and encodes the position of the obstacle in the path steidtom SM, the velocity
planner observes the obstacle and plans to bring the vebialstop.

Cycle k+1: The logic planner evaluates SM, and observes that the pathios a
collision with a static obstacle. Given the current corietri stay in the lane, the goal
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Fig. 4. The logic planner finite state machine for driving in a road region

cannot be reached and the lane must be blocked. The appedpeiaavior for the robot
would be to drive up to the obstacle and come to a complete Btow jump i cycles
ahead, to where the robot is stopped.

Cyclek+i+1: Once the robot is stopped, the reasoning module relaxesttstraint
to stay in the lane. The path planner searches the adjacentNe collision is reported
for this new planning problem and the robot is allowed to pass
Logic planner: The logic planner was implemented as a finite state machimethie
road navigation, the machine consisted of 10 states dethytéfM,F,C]). The states
constisted of a mode (M), a flag (F), and an obstacle clearstpérement (C). The
state machine is illustrated in figure 4. During urban na¥igea the robot must interact
with static and dynamic obstacles. For planning, the staltistacles required an ad-
justment of the spatial plan, where as dynamic obstacleinedjan adjustment of the
robot’s velocity. Separating the spatial and velocity piag and encoding the dynamic
obstacle information on the path, the velocity planner aloould account for the nom-
inal interaction with the dynamic obstacle (such as caofailhg), and the logic did not
explicitly have to deal with this problem.

The modes included driving (DR) and stopping for obstacBEX). The flags in-
cluded no-passing (NP), passing without reversing (P) paisding with reversing (PR).
The obstacle clearance-modes included the nominal, oy sefde (S), an aggressive
mode (A), and a very aggressive, or bare, mode (B). The stathime can be divided
into trying to handle the obstacle while maintaining the mahclearance (-,S]), and
being more aggressive. The second option was only invokehwhre first failed, and
safe operation was guarenteed by limiting the robot spe#tese aggressive modes.

The nominal state for road driving, [DR,NP,S], was to allow passing, no re-
versing, and the nominal obstacle clearance, termed safetle. With no obstacles
blocking the desired lane, the logic state remained unatandg/hen a static obstacle



was detected, the path planner would: (i) find a path arouadlistacle while staying
in lane, (ii) change lanes to another legal lane (if avadgbbr (iii) report a path with
a collision. For case (iii), the logic planner would know ttlacollision free path was
not available from the status message (SM), and would switchobstacle handling
mode.

The correct behavior when dealing with a static obstacletwasive up to it, com-
ing to a controlled stop [STO,NP,S] (refer to figure 4). If aydime the obstacle dis-
appeared, the logic would switch back to the appropriaterdrimode. Once the robot
was at rest, the logic switched to driving mode, while allagvpassing into oncoming
lanes of traffic [DR,P,S]. If a collision free path was obtain then the robot would
pass the obstacle and switch back to the nominal driving state the obstacle had
been cleared. If a collision free path did not exist, thendlgé& would again make sure
that the robot was stationary before continuing [STO,R&this point, either (i) the
robot was too close to the obstacle, (ii) there was a partimkband by reducing the
obstacle clearances the robot might squeeze by, or (iiijadhe was fully blocked. The
first case was considered by switching into a mode where bedhipg and reversing
was allowed [DR,PR,S]. If a collision free path was found gassing maneuver was
performed. If a collision was detected and persisted, thetravould again be stopped
[STO,PR,S]. At this point, reducing the obstacle clearammtproceeding with caution
was considered.

Given the size of the robot (the second largest robot in ttg7 ZDUC), a major
concern was maneuvering in close proximity to static olbsgado curb this problem,
it was desirable to reduce the required obstacle clearai@ess the robot switched
to aggressive mode, [STO,PR,A]. If a collision free path Wasd, the robot would
drive in this mode [DR,PR,A]. As soon as a path was found thasfed the nominal
obstacle clearance, the logic switched back to [DR,PRf$jel robot could not find a
collision free path while in aggressive mode, it would resltite obstacle clearances
even further by switching to bare mode [STO,PR,B]. If a patts\viound, it would
drive in this mode [DR,PR,B] until a path was found that did rexjuire this mode.
The logic would then switch back to the aggressive mode [BRAP If no collision
free path could be found, even in bare mode, the conclusianthed the road must be
blocked. At this point, the tactical planner could not coetplthe segment-level goal. In
accordance with the contigency management strategy, ¢tieabplanner sent a failure
to the route planner, which replanned the route. If the relast on a one-way road, the
route-planner would allow the robot to enter off-road maatea last resort.

Since reversing was allowed, it was possible for the robgetostuck in a cycle of
not finding a path [STO,PR,S], then backing up and finding b fi2R,PR,S], driving
forward and detecting a collision, backing up again, etanattempt to avoid this cycle
and others like it, some transitions were created to exgdgHeops (from [DR,PR,S])
as part of contigency management.

4 Resultsand Discussion

The tactical planner, and logic planner, was implemented\ige, a modified Ford
E350 van (see figure 1). The robot was equipped with 24 CPUSATIAR units, 5



Fig.5. RNDF and aerial image of Area B.

stereo camera pairs, 2 radar units, and an Applanix INS totaiaian estimate of its
global position.

The NQE consisted of three test areas, which tested diffaspects of urban driv-
ing. The course of interest here is area B, for which the RNVEflayed with aerial
imagery, is given in figure 5. The course consisted of appnaie¢ly 2 miles of urban
driving without live traffic and tested the robot’s ability tirive on roads, in parking
areas, and in obstacle fields. The course was riddled witit stastacles. The robots
started in the starting chutes, which were short lane setgriared with rails. The robot
would drive into an open area and proceed to a gate. The ghte k& one-way road,
lined with rails, which in turn led to an intersection and ttmirse. The robots would
then proceed around a traffic circle and make its way to thmpgzone (southern oc-
tagonal region). Once through this parking lot, the robatsed through the ‘gauntlet’,
and made its way to the northern zone (obstacle field). Fraretht would make its
way back to the finish (next to the start area). The resultp@sented next, followed
by a discussion.

41 Runl

The logic states and velocity profile for run 1 are presemefijures 6 and 7, respec-
tively. Four events are indicated on these figures, and theggonding locations are
shown in figure 5. The robot had difficulty exiting the stagaf events A and B), but
made rapid progress before getting stuck in the parkingelaift C) and was manually
reset (event D). It still could not exit the parking area arasveventually recovered
from the parking area.

The robot was in the nominal driving state ([DR,NP,S]) on®/526 of the run (see
figure 6). Since the robot got stuck in the parking area (e€eamid onwards) and ended
up spending 34.3% of the run there, it is more useful to camdite logic data up to
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Fig. 7. Velocity profile during run 1 of NQE area B

event C. The robot spend 44.3% of the run up to event C in thanamiriving state,
which was still a low number. The logic switched out of the muahstate 8 times to deal
with obstacles, of which 5 were in the start area. 42.8% orrahgup to the parking
area) was spent dealing with obstacles - 30.2% in the norobsihcle clearance mode,
and 12.6% in the more aggressive modes. It also switchedf dnteosection-handling
mode due to static obstacles 3 times and was in exceptiordihgmadode 0.65% of the
total run.

The robot spent the first 9 minutes in the start area, wheredtled to travel
through a gate and an alley (event B). The logic correctlydved into the aggressive
modes since the alley was too narrow for the robot to passigifirevhile maintain-
ing the nominal obstacle clearance. Unfortunately, thdémpntation of the switching
to intersection-handling mode was lacking, and the obstelelarance would get reset
causing the path-planner to fail again. This happened 3stiméhe start area, and the
robot was stationary much of the time in this area (see figur&h®e robot swiched to
the aggressive modes, and eventually to a failure mode,ifatee run (around 700 s)
due to a misallignment of the road and the RNDF. The robot fymtksin the parking
area since it again could not maintain the necessary obstéErances and complete
the goal. In this case, even the most aggressive mode wasffiotest.

The team realized that, in order to compete, it needed tostdja strategy. It
was necessary to be more aggressive around static obsthatestill maintain op-
erational safety. It was decided to reduce the nominal clestdearance to the bare
value by default, thereby collapsing the logic for changihig distance in the logic
planner. That meant removing the connections between [RSP-[STO,PR,A] and
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[STO,PR,S}[STO,PR,A] (see figure 4). A connection (shown with a dasheog
was added from [STO,PR,S][FAIL]. For safety, the planner relied on the velocity
planner to slow the robot near obstacles.

42 Run?2

The logic states for the second attempt are shown in figurén8.rébot was able to
complete the run in a little over 23 minutes. It effortlesskited the start area (event
A), and drove up to and through the parking area (event B).t,Nexavigated the
‘gauntlet’ (event C) successfully, before driving throutie obstacle field (event D),
and on to the finish area.

The robot spent 61.6% of the run in the nominal driving mode, dealt with obsta-
cles for 11.6% of the time. The robot switched out of the nahdttiving mode 4 times
to deal with obstacles. It also spent 16.5% of the time irrggetion handling mode (14
intersections), and spent 7.93% of the run performing thkipg maneuver. The robot
spent 1.73% of the run navigating the obstacle field, and bagkoeptions.

The time spent in obstacle mode was still worrisome. Durirggrtavigation of the
‘gauntlet’, the obstacles were so close together (longialty) that the function esti-
mating the completion of the passing maneuver was insufticiehus, the robot re-
mained in passing mode during most of this section.

4.3 Discussion

The notion of using the path planner capabilities to assihé decision making pro-
cess worked very well, even though the implementation waperdect. The significant
improvement in performance from run 1 to run 2 was due to tfect¥e reduction in
size of the robot. Some implementation shortcoming have lmeentioned, and are
summarized here. It is important to note that these shoitugsrare often artifacts of
other parts of the system. The logic for switching to intetieam handling was fragile
since the obstacle clearance mode was reset. Also, estgwvaliether a passing maneu-
ver was complete was not robust. This was complicated bydtieganning approach
used. One shortcoming of the approach was not explicitlpatiing for uncertainty
decision process. It had been intended to extend the logicdount for this, but due to
the time constraints it was not possible. However, by udieggianner components to
assist in the decision making, this shortcoming was largetigated.



5 Conclusion and Future Work

An approach to situational reasoning for driving on roads'ban terrain was described.
In an attempt to manage the complexity of the reasoning neodtmlowledge from the
path planner was used and the reasoning module was implethasa finite state ma-
chine. This module was only invoked when the planner faitetind a solution while
satisfying all the constraints imposed by the traffic rulBise reasoning module was
implemented as part of a complete (and complex) autonomsisra, developed for
urban navigation. The performance of the module was digclisased on the results of
the two runs in area B during the DUC NQE. The module imposedthrect behavior
on the robot in most cases. The failures were a result of tpéeimentation and the size
of the robot. Uncertainty was handled implicitly througle tise of the planner compo-
nents to assist in the decision making. Future work incleksnding this approach to
explicitly account for uncertainty during the decision gess.
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