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Abstract: The control of a network of signalized intersections is considered. Previous works
proposed a feedback control belonging to the family of the so-called back-pressure controls that
ensures provably maximum stability given pre-specified routing probabilities. However, this
optimal back-pressure controller (BP*) requires routing rates and a measure of the number of
vehicles queuing at a node for each possible routing decision. It is an idealistic assumption for
our application since vehicles (going straight, turning left/right) are all gathered in the same
lane apart from the proximity of the intersection and cameras can only give estimations of
the aggregated queue length. In this paper, we present a back-pressure traffic signal controller
(BP) that does not require routing rates, it requires only aggregated queue lengths estimation
(without direction information) and loop detectors at the stop line for each possible direction. A
theoretical result on the Lyapunov drift in heavy load conditions under BP control is provided
and tends to indicate that BP should have good stability properties. Simulations confirm this
and show that BP stabilizes the queuing network in a significant part of the capacity region.

Keywords: road traffic, traffic lights, traffic control, transportation control, queuing theory,
back-pressure, network control.

1. INTRODUCTION

In today’s metropolitan transportation networks, traffic
is regulated by traffic light signals which alternate the
right-of-way of users (e.g., cars, public transport, pedes-
trians). Congestion is a major problem resulting in a loss
of utility for all users due to delayed travel times over
the network Shepherd (1992). That is why it is of high
interest to find a control policy that can stabilize a net-
work of signalized intersections under the largest possible
arrival rates. Under traffic light control, a particular set
of feasible simultaneous movements, called a phase, is
decided for a period of time Papageorgiou et al. (2003).
Controlling a traffic light consists of designing rules to
decide which phase to apply over time. Pre-timed policies
activate phases according to a time-periodic pre-defined
schedule, and the signal settings can be fixed by optimiza-
tion, assuming within-day static demand Cascetta et al.
(2006); Miller (1963); Gartner et al. (1975). They are not
efficient under changing arrival rates which require adap-
tive control. Many major cities currently employ adap-
tive traffic signal control systems including SCOOT Hunt
et al. (1982), SCATS Lowrie (1990), PRODYN Henry
et al. (1984), RHODES Mirchandani and Head (2001),
OPAC Gartner (1983) or TUC Diakaki et al. (2002). These
systems update some control variables of a configurable

pre-timed policy on middle term, based on traffic mea-
sures. Control variables may include phases, splits, cycle
times and offsets Papageorgiou et al. (2003). More re-
cently, feedback control algorithms that ensure maximum
stability have been proposed both under deterministic
arrivals Varaiya (2013), and stochastic arrivals Varaiya
(2009); Wongpiromsarn et al. (2012). These algorithms
are based on the so-called back-pressure control presented
in the seminal paper Tassiulas and Ephremides (1992)
for applications in wireless communication networks and
require real-time queues estimation. An optimal back-
pressure traffic signal controller (BP*) is presented in
Wongpiromsarn et al. (2012) and Varaiya (2009). They are
defined under different modelling assumptions but they
are algorithmically equivalent. The key benefit of back-
pressure control is that it can be completely distributed
over intersections, i.e., it requires only local information
and it is of O(1) complexity. However, the strong assump-
tions of the model in Varaiya (2009) (and also implicitly
in Wongpiromsarn et al. (2012)) is that controllers require
routing rates and a measure of the number of vehicles
queuing at every node of the network for each possible
routing decision. However, in reality, apart from the prox-
imity of the intersection, vehicles (going straight, turning
left, turning right, etc.) are all gathered, and it is difficult
to estimate the number of vehicles queuing for each di-



rection (see Figure 1). Cameras can give good estimations
of the total number of vehicles queuing at a given node,
but not the direction of vehicles. However, it is feasible to
detect if there are some vehicles (or no vehicle) that want
to go to a given destination, if we assume the existence
of dedicated lanes from the proximity of the intersection
with loop detectors at the stop line.

Dedicated lanes indicated by road markings

Fig. 1. Dedicated lanes for turning vehicles. The dedicated
lanes are indicated by road markings when vehicles
approach the intersection. Apart from the proximity
of the intersection, vehicles are all gathered.

The back-pressure control proposed in this paper(BP)
requires such loop detectors and an estimation of the total
number of vehicles queuing at each node (gathering all
possible directions). It does not assume any knowledge of
routing rates. We evaluate the performance of BP with
regards to the optimal BP* control. The contribution of
the paper is to provide a back-pressure traffic signal con-
troller based on more realistic assumptions on the available
measurements than state-of-the-art back-pressure traffic
signal control and to show in simulations that stability is
conserved in a significant part of the capacity region.

The paper is organized as follows. Section 2 describes the
queuing network model. Sections 3 is mainly expository:
it describes BP* highlighting its stability-optimality. The
contributions of the paper are presented in Section 4 and
5. Section 4 exhibits BP and a theoretical result on the
Lyapunov drift that tends to indicate that it should have
good stability properties. The simulations of Section 5
confirm this and show that BP stabilizes the network in a
significant part of the capacity region. Section 6 concludes
the paper and opens perspectives.

2. MODEL

As standard in queuing network control, time is slotted,
and each time slot maps to a certain period of time during
which a control is applied. It is convenient to use a fixed
pre-defined time slot length, whose size corresponds to
the minimal duration of a phase. When the time slot
size is fixed, the traffic signal control problem consists of
computing at the beginning of each time slot t the phase
to apply during slot t. The network of intersections is
modelled as a directed graph of nodes (Na)a∈N and links
(Lj)j∈L. Nodes represent lanes with queuing vehicles, and
links enable transfers from node to node: this is a standard
queuing network model.

It is a multiple queues one server queuing network. Every
signalized intersection is modelled as a server managing a
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Fig. 2. A junction with 4 incoming nodes and 4 outgoing
nodes which corresponds to the intersection depicted
in Figure 3.

junction which consists of set of links. Junctions (Ji)i∈J

are supposed to form a partition of links. For every
junction J , I(J) and O(J) denote respectively the inputs
and the outputs of J . Inputs (resp. outputs) of junction
J are nodes N such that there exists a link L ∈ J
pointing from (resp. to) N . The reader should consider the
introduction of junctions in the model as an overlay of the
queuing network model. For the sake of simplicity, we do
not represent links in the queuing network representation
of Figure 2.

Every server maintains an internal queue for every in-
put/output, and server work enables to transfer vehicles
from an input to an output of the junction. The internal
queue at node Na is a vector Qa and Qab(t) denotes
the number of vehicles in the queue of node Na enter-
ing Nb upon leaving Na. The aggregated queue length
Qa(t) =

∑
b Qab(t) denotes the total number of vehicles

at node Na considering all possible routings after exiting
Na. In this paper, queues are supposed to have infinite
capacities: there is no blocking (see Gregoire et al. (2013a)
for an adaptation of back-pressure traffic signal control in
the context of finite capacities).

At every time slot t, servers work, resulting in vehicles
transfers. Under phase-based control, the transmission
rate offered by servers are set by activating a given signal
phase pi at each junction Ji from a predefined finite set of
feasible phases Pi at every time slot t. Let P =

∏
i∈J Pi

denote the set of feasible global phases. Each global phase
p = (pi)i∈J ∈ P results in a different service matrix
µ(p) where µab(p) represents the transmission rate offered
by servers to transfer vehicles from Na to Nb in a time
slot when phase p is activated. The transmission rate is
assumed to be binary, µab(p) ∈ {0, sab}: it is zero or it
equals the saturation rate sab. Only the vehicles which
are at a node at the beginning of time slot t can be
transferred from that node to another node during slot
t. Figure 3 depicts the 4 typical phases of a 4 inputs/4
outputs junction.



N1

N2

N3

N4

N5 N6

N7 N8

N1

N2

N3

N4

N5 N6

N7 N8

N1

N2

N3

N4

N5 N6

N7 N8

N1

N2

N3

N4

N5 N6

N7 N8

(a) (b)

(c) (d)

Fig. 3. A typical set of feasible phases at a junction. For
example, supposing that service rates equal 0 or 1, the
non zero service rates for phase (a) are µ31, µ36, µ24

and µ27

Exogenous arrivals occur at every node of the network.
Let Aa(t) denote the number of vehicles that exogenously
arrive at node Na during slot t. The arrival process Aa(t)
is assumed to be rate convergent with long-term arrival
rate λa ≥ 0. When a quantity of vehicles arrives at node
Na ∈ I(Ji) during slot t, exogenously and endogenously, it
is split and added into queues Qab, b ∈ O(Ji). The routing
process is exogenous and assumed to be rate convergent
with ratios rab with

∑
b rab ≤ 1 (see the supplementary

material Gregoire et al. (2013b) for more details). Exits
are modelled by assuming that the routing matrix is
non-conservative. 1 −

∑
b rab represents the exit rate of

vehicles entering node Na, it is the ratio of vehicles directly
removed from the network when entering node Na, i.e.
not added to any queue Qab. Note that the only variable
that is controlled is the activated phase at every time slot
t, denoted by p(t), and yielding a service matrix µ(p(t))
during slot t.

3. BP* CONTROLLER

3.1 The controller

In the following, we expose BP* signal control. It is an ex-
tension of the algorithm proposed in Varaiya (2009) where
internal/exit links are not differentiated, because exits may
occur at any link of the network. It is quite equivalent
to the back-pressure controller of Wongpiromsarn et al.
(2012), assuming the nodes carry direction information.
Loosely speaking, the idea of back-pressure control is to
compute pressure at every node based on node occupancy
and to open flows which have a high upstream pressure
and a low downstream pressure, like opening a tap.

Algorithm 1 defines BP* control. At every junction i, for
each phase p ∈ Pi, the weighted sum

∑
a,b Wab(t)µab(p)

is computed. Wab(t), the weight associated to transfers
from Na to Nb, is the difference between the upstream

Algorithm 1 BP* control

Require:
Queues lengths matrix Q(t),
Pressure functions Pab(Qab) for all a, b ∈ N ,
Routing matrix r.
function BP*

5: for i ∈ J do
for a ∈ I(Ji), b ∈ O(Ji) do

Πab(t)← Pab [Qab(t)]
end for
for a ∈ I(Ji), b ∈ O(Ji) do

10: Wab(t)← max (Πab(t)−
∑

c rbcΠbc(t), 0)
end for
p⋆i (t)← arg max

pi∈Pi

∑
a∈I(Ji),b∈O(Ji)

Wab(t)µab(pi)

end for
return Phase p⋆(t) to apply in time slot t

15: end function

pressure Πab(t) and the weighted downstream pressure∑
c rbcΠbc(t). BP* consists of selecting the phase that

maximizes the weighted sum. Moreover, we assume that
in case of equality the selected phase p∗(t) always satisfies
µab(p

∗(t)) = 0 if Wab(t) = 0.

3.2 Optimal stability

The following theorem states that under linear pressure
functions with strictly positive slope, BP* as defined by
Algorithm 1 is optimal in terms of stability, i.e. stabilizes
the network for all arrivals rates that can be stabilized
considering all possible control strategies. It is an exten-
sion of the results of Varaiya (2009), because vehicles can
enter/exit the network at any node, there is no distinction
between exit nodes and internal nodes. Moreover, in con-
trast with Varaiya (2009); Wongpiromsarn et al. (2012),
pressure functions are just assumed to be linear with
strictly positive slope in this paper: Pab(Qab) = θabQab,
θab > 0.

Theorem 1. (Back-pressure optimality). Assuming that
pressure functions are linear with strictly positive slopes,
BP* as defined by Algorithm 1 is stability-optimal.

Proof. Due to space limitations, the full proof is not pro-
vided in this paper and is available in the supplementary
material Gregoire et al. (2013b). Stability is proved using
the Lyapunov function V (t) = V(Q(t)) =

∑
a,b θabQab(t)

2.
The existence of B, η > 0 such that:

E{V (t + 1) − V (t)|Q(t)} ≤ B − η
∑

a,b

Qab(t), (1)

enables to conclude stability for the queuing network using
the sufficient condition proved in Neely (2003).

4. BP CONTROLLER

4.1 The controller

Back-pressure control proposed in Section 3 requires com-
plete knowledge of the queues lengths matrix Q(t) and the
routing rates. For our application, a complete knowledge
of Q(t) is not realistic because dedicated lanes for turning



vehicles are only from the proximity of the junction. Far-
ther, all vehicles are gathered and the controller does not
have access to the direction of every vehicle in the absence
of vehicle-to-infrastructure communications. That is why
we propose in the present paper a controller that uses
only the aggregated queues lengths Qa(t) =

∑
b Qab(t),

i.e. a queue length without direction information. It is
defined by Algorithm 2. It computes the phase to ap-
ply at every time slot without requiring neither routing
rates nor complete knowledge of queues lengths matrix
Q(t) and takes as inputs the aggregated queues lengths
Qa(t) =

∑
b Qab(t). However, it still requires vehicle de-

tectors variables dab(t) ∈ [0, 1] defined below:

dab(t) = min(Qab(t)/sab, 1) (2)

The variable dab(t) can be measured by loop detectors
positioned at dedicated lanes.

Algorithm 2 BP control

Require:
Queues lengths Qa(t),
Pressure functions Pa(Qa),
Loop detectors variables dab(t).
function BP

5: for i ∈ J do
for a ∈ I(Ji) ∪ O(Ji) do

Πa(t)← Pa [Qa(t)]
end for
for a ∈ I(Ji), b ∈ O(Ji) do

10: Wab(t)← dab(t)max (Πa(t)−Πb(t), 0)
end for
p⋆i (t)← arg max

pi∈Pi

∑
a∈I(Ji),b∈O(Ji)

Wab(t)µab(pi)

end for
return Phase p⋆(t) to apply in time slot t

15: end function

Algorithm 2 defines BP control. Note that for transfers
from Na to Nb, the upstream pressure is now Πa(t) and the
downstream pressure is Πb(t): individual queue pressures
Πab(t) are not required. Moreover, the difference between
the upstream pressure and the downstream pressure is
multiplied by dab(t) to form Wab(t). Hence, if at time slot
t, there is no vehicle at Na going to Nb, the weight Wab(t)
associated to transfers from Na to Nb vanishes.

4.2 Behaviour of the Lyapunov drift under heavy load
conditions

Let us consider the Lyapunov function V(Q) and its
evolution through time V (t) defined below:

V (t) = V(Q(t)) =
∑

a

θaQa(t)
2 =

∑

a

θa(
∑

b

Qab(t))
2

(3)

Let us define heavy load conditions at time slot t as states
of the network such that if the right-of-way is given to any
individual queue, it can be emptied at saturation flow, i.e.
there are enough vehicles in the individual queue to ensure
saturation:

∀a, b ∈ N , Qab(t) ≥ sab (4)

The following theorem proves that under heavy load con-
ditions the Lyapunov drift respects the sufficient condition
for network stability if λ+ ǫ ∈ Λr, for sufficiently large ǫ.

Theorem 2. (Lyapunov drift under heavy load conditions).
Assume λ + ǫ ∈ Λr, BP control as defined in Algorithm
2 is applied and the network is in heavy load conditions,
then there exists B, η > 0 such that :

E{V (t+ 1)− V (t) | Q(t)} ≤ B − η
∑

a

Qa(t) (5)

for sufficiently large ǫ.

Proof. Due to space limitations, the full proof is not pro-
vided in this paper and is available in the supplementary
material Gregoire et al. (2013b).

The above theorem tends to indicate that the network
should have good stability properties because the condi-
tion for stability is verified in heavy load conditions for λ
sufficiently interior to the capacity region. Unfortunately it
does not enable to conclude that the network is stable in a
significant part of the capacity region. Indeed, heavy load
conditions can not be guaranteed at all time, and when an
individual queue Qab is below the saturation flow sab, it is
a constraint for the emptying of Qa, that can unstabilize
the queuing network. Hence, the characterization of the
stability region of the queuing network under BP control
with the modelling assumptions presented in Section 2
is still a challenging problem. That is why we propose
to implement the two back-pressure controllers and to
compare their behaviour. The results of the simulations
are presented in the next section.

5. SIMULATIONS

5.1 The simulation platform

The model and the algorithms presented in this paper
have been implemented into a simulator coded in Java.
It simulates a grid network and every junction of the grid
has 4 inputs, 4 outputs, and 4 feasible phases as depicted in
Figure 3. The height and the width are parameters. Every
individual flow allowed by phases of Figure 3 equals 10
(it is the saturation rate). Vehicles are generated at each
node Na at an arrival rate λa that can be set as desired.
The arrival process generates individual arrivals as well as
batches of 10 vehicles. The routing ratios are fixed at the
beginning of the simulation.

5.2 Behaviour of the two back-pressure controllers

Simulations have been carried out for a 21×21 square grid
network (see Figure 4). First of all, we present simulations
results in the case of a network that has been configured
with the same arrival rates and routing rates at every node
of the network.

Simulation results for a particular network and particular
arrival/routing rates The numerical results of Figure 5
correspond to the following parameters. Turn left probabil-
ity when a vehicle enters a node: 0.2; turn right probability



Fig. 4. The 21 × 21 grid network used for the presented
simulations.

when a vehicle enters a node: 0.2; go straight probability
when a vehicle enters a node: 0.5; exit probability when a
vehicle enters a node: 0.1; probability of a batch: 0.05;
pressure functions Pa(Qa) = Qa and Pab(Qab) = Qab

(θa = θab = 1); vehicles are generated at every node with
the same arrival rate λ > 0 that can be set as desired at
the beginning of the simulation.

Experiments are carried out at height different arrival
rates: λ = 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8 and 0.9 vehicles
per time slot. Figure 5 depicts the global queue of the
network over time, i.e.

∑
a Qa(t) =

∑
a,b Qab(t), for the

height arrival rates, under BP* control and under BP
control. One can observe in Figure 5 that under BP*
control, the queuing network is stabilized for λ ≤ 0.7
and gets unstable from λ = 0.75. Under BP control, it is
stabilized for λ ≤ 0.65 and gets unstable from λ = 0.7.
First of all, it proves that as expected, BP control is
not stability-optimal. However, in the particular setting of
this experiment, (uniform arrivals/routing rates and grid
network), the performance of BP and BP* are very close,
and the optimality gap is around 0.05/0.7 ≃ 10%, i.e. a
performance of 90%.

However, such a uniform network is not realistic and
the results of the next paragraph try to evaluate the
performance of BP with regards to BP* with less specific
routing/arrival parameters.

Evaluation of BP with regards to BP* on several samples
of parameters In the following simulations, the rout-
ing/arrival process parameters are not uniform over nodes
any more. 10 samples of parameters have been generated.
For each sample, the routing/arrival rates are generated
as follows. For each direction (straight, left, right), (uni-
formly) random values between 0 and 1 are generated,
say ys, yl, yr; a (uniformly) random value between 0 and
0.1 is generated for exits, say yω; and the routing rates
are set by normalization of the generated real values,
i.e. for the left direction for example, the routing rate
is yl/(ys + yl + yr + yω). The arrivals rates are set by
generating a (uniformly) random value between 0 and 1
for every node, say λ0

a. At the beginning of the simulation,
a parametrizable scaling value x enables to fix the actual
arrival rate of the current simulation: λa = xλ0

a, where x
has the same value over nodes. The value of 0.1 for the
scale of exits is quite arbitrary and, loosely speaking, fixes

Fig. 5. Evolution of the global queue of the network
over time for height arrival rates. Comparison of the
behaviour of the network under BP/BP* control.

the averaged number of travelled nodes before exiting the
network.

Note that the routing rates and the values λ0
a are fixed

for a given sample. However, the value of λa depends on
the value of x set at the beginning of the simulation. The
parameter x enables to define a performance for BP with
regards to BP* for a given sample. We let x vary and we
observe the maximum value of x such that the network is
stable under BP versus BP* (say x∗

max for BP* and xBP
max

for BP). We define the performance of BP with regards
to BP*, or more shortly the performance of BP (because
BP* is optimal), as follows:

performance(BP) = xBP
max/x

∗
max (6)

As for previously presented simulations, the probability
of a batch is 0.05 and the pressure functions are linear
with slope 1. Figure 6 depicts the performance obtained for
the 10 samples, the average performance and the standard
deviation. The average performance is around 80%, i.e.
the optimality gap is about 20%. The simulation results
prove that the performance of BP is affected by the rout-
ing/arrival rates. Hence, the distribution (over samples) of
the performance would be different for a different distribu-
tion of routing/arrival rates. Nevertheless, in the particular
setting of the experiment, the average optimality gap of
20% seems again a low price to pay with regards to the



much more realistic assumptions on the measurements
available to compute the control.

Fig. 6. Performance distribution for ten samples. The point
above the axis represents the average performance
over samples and the horizontal bar is the standard
deviation.

However, these promising results can not be extended to
any kind of network of intersections and further simula-
tions with a more general structure of network should
be carried out to confirm the closeness of performance.
We are currently implementing our algorithms in a traffic
simulator in order to test the performance of BP control
with real traffic data of the city of Singapore.

6. CONCLUSION AND PERSPECTIVES

The simulation results of this paper prove that BP is
not optimal but tend to indicate that it stabilizes the
queuing network in a significant part of the capacity
region. The benefits of BP originate from the more realistic
assumptions on queues measurements. Computing the
phase to apply only requires aggregated queues lengths
estimation that can be provided by cameras, and loop
detectors at dedicated lanes. The optimality gap, around
20% in the particular setting of the experiments, seems
a low price to pay for the benefits of relaxed assumptions
on the available measurements. However, simulations have
been conducted in a grid network, which is a particular
structure, and with synthetic data which can strongly
differ from real traffic data. To confirm the closeness of
performance, simulations should be carried out in a more
advanced traffic network simulator.

Finally, the emergence of vehicle-to-infrastructure commu-
nications opens avenues to enhance traffic signal control.
The traffic signal controllers can have access, in particular,
to the destination node of every vehicle. As a result, back-
pressure control with a multiple-commodity queuing net-
work model, as proposed in Neely (2003) in the context of
wireless communication networks, should be investigated.
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