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Abstract—We describe recent advances in formal synthesis of
robot controllers from temporal logic specifications. In particular,
we consider reactive specifications where the robot continuously
gathers information about its environment and decides its ac-
tion at run time based on this information. The automatically
generated controller is provably correct with respect to a given
specification for all the valid environment behaviors. We discuss
the main limitation of such controller synthesis – the state
explosion problem – and two approaches that mitigate this
problem. Computational tools that implement these approaches
are also described. An autonomous vehicle navigating an urban-
like environment is used as an illustrative example throughout
the paper.

Index Terms—Temporal logic, high-level control, receding
horizon

I. INTRODUCTION

Robots these days feature a tight interplay between com-
putational and physical components. Take the vehicles in the
recent DARPA Urban Challenge (DUC) [1] as an example.
The competing vehicles were supposed to navigate, in a fully
autonomous manner, through a partially known urban-like
environment populated with static and dynamic obstacles and
perform different tasks such as on-road and off-road driving,
parking and visiting certain areas while obeying traffic rules.
They also needed to negotiate intersections, handle changes
in the environment or operating conditions and re-plan in
response to such changes. During the execution of these high-
level tasks, the vehicles had to obey the low-level physics
and actuation limitations that constrain their maneuverability.
Hence, the high-level logic that governs the behavior of the
vehicles needs to be properly integrated with the low-level
controller that regulates the physical hardware.

Systems with tight coupling between computations and
physics are typically complex, yet a lot of them are designed
and implemented in an ad-hoc manner. Even though correct
operation of the individual components is established through
extensive tests or formal verification, the complexity of the
overall system usually renders testing impractical and exceeds
the capabilities of formal verification tools. For example, a
mismatch in the abstraction of the physical system used at dif-
ferent levels of the planning stack of Alice (Figure 1) [2], Team
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Fig. 1: Alice, Team Caltech’s entry in the 2007 DUC.

Caltech’s entry in the DUC, had never been discovered in
thousands of hours of our simulations and over three hundred
miles of field testing [3]. Once the problem was uncovered,
it was difficult to modify the underlying ad-hoc design. In
fact, this problem triggered the series of unacceptable behavior
that disqualified Alice from the 2007 Challenge. Therefore,
we maintain that successful deployment of autonomous ve-
hicles and robots in general will require advances in formal
approaches both for verification and correct-by-construction
synthesis of embedded controllers.

In this paper, we review recent advances in formal synthesis
of embedded robot controllers. Specifically, we consider the
following problem. Given a model for the robot and its
specification expressed in a formal language, here Linear
Temporal Logic (LTL), synthesize a control protocol that,
by construction, ensures that the continuous robot behavior
satisfies the given specification for all valid environment
behaviors. We address reactive specifications in which the
robot behavior is different depending on the information it
gathers through its sensors at run time. For example, if a
robot encounters a blocked road the controller reacts to it by
changing the robot’s trajectory so that it still reaches a certain
checkpoint.

A common two-step procedure to the above synthesis
problem is based on constructing a finite-state abstraction
of the underlying physical system (e.g., the motion of the
vehicles in the autonomous driving example) and synthesizing
a strategy [4], represented by a finite state automaton, that
satisfies high-level specifications. This procedure leads to a
hierarchical, two-layer control structure with a discrete planner
computing a high-level, discrete plan which is implemented by
a low-level, continuous controller. Simulations and bisimula-
tion relations [5] provide a proof that the continuous execution
preserves the correctness of the discrete plan. The main
limitation of the approaches for synthesizing reactive control
protocols is almost invariably the resulting computational
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complexity. In this paper we describe two approaches that
mitigate this problem. One relies on coarse abstractions that
are constructed based on appropriate low-level controllers and
aims to synthesize complete controllers, thus providing global
guarantees for task completion. The other approach assumes
a fine-grain abstraction more suitable for complex dynamics
and employs a receding horizon framework where a controller
only plans out an execution for a short step ahead and re-
computes the plan as the robot moves, thus allowing for
complex dynamics at the expense of completeness.

Construction of controllers that ensure that the system
satisfies certain temporal logic specifications has recently
attracted considerable attention. References [6]–[8] exploit the
availability of powerful model checking tools to synthesize
such control protocols. These approaches typically generate
open-loop strategies, i.e., they cannot satisfy reactive behaviors
that depend on the current state of the environment or handle
initial condition uncertainties. In [9] the authors transform LTL
specifications into a mixed-integer linear problem to solve
multi-robot missions. In [10] the authors generate control
policies that can deal with actuation error while probabilis-
tically satisfying LTL specifications. There, the specification
is not reactive but the behavior is reactive with respect to
disturbances. In this paper, on the other hand, we address
reactivity at the specification and control level; however, we
assume robust controllers that can deal with disturbances at
the low level.

The paper is structured as follows. We first provide useful
definitions and descriptions of the formalisms and algorithms.
We discuss, through the use of an illustrative example of an
autonomous vehicle driving in an urban-like setting, the speci-
fication, control synthesis and execution of the robot behavior.
We then describe two approaches that clarify the tradeoffs
inherent in dealing with the computational complexity and
describe tools that are available. We conclude with future
directions and challenges.

II. BACKGROUND

Addressing the problem of generating continuous control
for the motion and action of a robot operating in the physical
world, the work described in this paper first abstracts the
problem into a discrete problem, then obtains a provably
correct discrete solution and finally continuously implements
that solution. To facilitate the discussion we first define the
main formalisms that are used:

A. Automata

An automaton1 A is a tuple A = (Q,Q0,Σ,Γ, δ, γ) where
• Q is a set of states,
• Qo ∈ Q is the set of initial states,
• Σ is an input alphabet (set of symbols used to label

transitions),
• Γ is an output alphabet (set of symbols used to label

states),

1We slightly abuse the term automaton here as we do not define the usual
set of accepting states. A more accurate term would be “Kripke Structure [11]
with labeled transitions”.

• δ : Q×2Σ → 2Q is the transition relation, i.e., δ(q,X) =
Q′ where Q′ ⊆ Q and X ⊆ 2Σ is a set of input symbols,
defines the set of all possible next states given a current
state q and an input X , and

• γ : Q→ 2Γ is the labeling function that assigns to each
state a set of output symbols γ(q) = Y, Y ⊆ 2Γ.

In the following, such an automaton will represent the discrete
solution of the robot control problem where the input alphabet
corresponds to the robot’s sensor information and the output
alphabet to the robot’s motion and action.

A run r of the automaton A under an input sequence
x(0), x(1) . . . , x(i) ∈ 2Σ is a sequence of states q(0), q(1), . . .
that satisfy (a) q(0) ∈ Q0 and (b) q(i+ 1) ∈ δ(q(i), x(i)) for
all i ≥ 0.

We define the behavior of a run r = q(0), q(1), . . . under
an input sequence x(0), x(1) . . . , denoted as behav(r), as
the sequence (x(0), y(0)), (x(1), y(1)), . . . such that x(i) ∈
2Σ, y(i) = γ(q(i)) for all q(i) ∈ r, i ≥ 0.

B. Linear Temporal Logic

The work described in this paper utilizes Linear Temporal
Logic (LTL) as the underlying formalism that is used to spec-
ify high-level, reactive robot behavior. Loosely speaking, LTL
allows one to reason about the change over time of the truth
values of atomic propositions. The syntax of LTL is recursively
defined as follows, where π is an atomic proposition in the set
AP which also include the True and False propositions:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕU ϕ.
Given negation (¬) and disjunction (∨), we can define con-
junction (∧), implication (⇒), and equivalence (⇔). The
temporal operators “next” (©) and “until” (U) can be used
to derive additional temporal operators such as “eventually”
3ϕ = True U ϕ and “always” 2ϕ = ¬3¬ϕ.

The semantics of an LTL formula ϕ is defined on an infinite
sequence σ of truth assignments to the atomic propositions
π ∈ AP . In this paper, we are interested in LTL formulas that
are defined over the set of infinite behaviors generated by a
robot’s control automaton.

Informally, the formula ©ϕ expresses that ϕ is true in
the next position in the sequence, i.e., the infinite behavior
starting from the next state in the automaton satisfies ϕ. The
formula ϕ1 U ϕ2 expresses the property that ϕ1 is true until
ϕ2 becomes true. The sequence σ satisfies formula 2ϕ if ϕ
is true in every position of the sequence (i.e., in every state),
and satisfies the formula 3ϕ if ϕ is true at some position of
the sequence (in some reachable state). Sequence σ satisfies
the formula 23ϕ if ϕ is true infinitely often. For a formal
definition of the semantics we refer the reader to [12].

C. LTL Synthesis

Synthesizing an LTL formula ϕ refers to the process of
automatically generating an automaton A such that, for every
infinite run of the automaton, the behavior of the run satisfies
the formula2, i.e., behav(r) |= ϕ ∀r. It has been shown that

2Note that in the formal methods community, the synthesized automata do
not usually have labeled transitions (e.g. [4]), i.e., Σ is empty, δ : Q → 2Q

and Γ contains the environmental (input) propositions.
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the complexity of synthesizing an arbitrary LTL formula is
double exponential in the size of the formula [13] but if the
specification is restricted to a subset of LTL, the complexity
becomes polynomial in the state space [4].

In the following we show how this restricted subset
of LTL can be used to capture many robotics tasks and
how the synthesis algorithm of [4] is used in a global and
receding horizon manner. Informally, the synthesis algorithm
transforms the specifications into a game between the
environment and the robot. If the robot can win no matter
what the environment does, an automaton is generated. If,
on the other hand, the environment can prevent the robot
from achieving its goals or the specification is unsatisfiable
(i.e., there is some logical contradiction), the algorithm will
return that the specification is unrealizable. For more details
regarding the algorithm the reader is referred to [4].

Tools: There are several tools that implement LTL synthesis
algorithms. For example, Lily [14], [15] can be used to
synthesize arbitrary LTL formulas but due to the complexity
it can handle only small specifications with few variables, and
RATSY [16] is a synthesis and analysis tool. In the work
described in this paper we have been using JTLV [17], [18],
which is a tool for implementing formal methods algorithms
and implementations of the synthesis algorithm of [4].

III. SPECIFICATION AND CONTROL SYNTHESIS OF
ROBOTIC TASKS

In the previous sections we defined the formalism (LTL) and
the formal methods used to create a discrete solution (automa-
ton synthesis). We now discuss how these formal methods are
used within the context of correct-by-construction, high-level
robot control. We will use the following example to illustrate
the techniques and tradeoffs.

Example 1: Consider an autonomous driving problem in
an urban-like environment, similar to the DUC. Important
desired properties of the vehicle typically include obstacle
avoidance, staying in the right lane, obeying traffic rules and
reaching different destinations. These properties can be easily
expressed in LTL [19], [20]. In the following sections we
describe two approaches to generating control for such an
autonomous vehicle that abstract the problem at different levels
and provide different guarantees.

A. From Specifications to Discrete Solution

At the core of the described approach is the need to
abstract continuous, infinite-state systems into equivalent (in
the simulation sense) atomic propositions and finite state
models. Several abstraction methods have been proposed based
on a fixed abstraction of motion. For example, a continuous-
time, time-invariant model was considered in [21], [22], [23]
and [24] for special cases of fully actuated (ṡ(t) = u(t)),
kinematic (ṡ(t) = A(s(t))u(t)) and piecewise-affine (PWA)
dynamics, respectively. A discrete-time, time-invariant model
was considered in [25] and [26] for special cases of PWA
and controllable linear systems, respectively. Reference [27]
deals with more general dynamics by relaxing the bisimulation

requirement and using the notion of approximate simulation
[28].

In order to capture a robotic task using LTL we define
a set of atomic propositions that contains three types of
propositions:
• Sensor propositions si: These propositions abstract the

perception system of the robot and provide information
about the environment.

• Location propositions ri: These propositions are used
to abstract the position of the robot in the workspace
(whether or not the robot is inside a defined region).

• Action propositions ai: These propositions abstract ac-
tions the robot can perform; for example, signalRight
that represents the on/off action of activating the right
turn signal.

Note that the sensor propositions represent the behavior of the
environment and the robot has no control over their value.

We represent the set of environment (sensor) propositions
as X = {s1, . . . sm}. The location and action propositions
represent the robot behavior and are set by the robot con-
troller. We represent the set of robot propositions as Y =
{r1, . . . rn, a1, . . . , ak}.

Once the problem is abstracted using a set of atomic
propositions, the robot task can be written as a conjunction of
LTL formulas of a given structure [4], [22]. These formulas
capture: (i) initial conditions of the environment and the robot,
(ii) the motion capabilities of the robot by encoding the
possible transitions between regions of the workspace, (iii) any
assumptions, about the behavior of the sensor propositions,
i.e., about the behavior of the environment, and (iv) the
restrictions, conditions and goals for the robot’s behavior.
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(a) A coarse partition of a network of roads and intersections

C1,1 C1,2 C1,L

C2,LC2,1 C2,2

C3,1 C3,2 C3,L

(b) A fine-grain partition of a two-lane road into cells

Fig. 2: Different levels of abstraction for the motion of an
autonomous vehicle

Example 2: Consider the autonomous driving problem de-
scribed in Example 1. We consider different levels of abstrac-
tion. For example, in a coarse abstraction (Figure 2(a)), a
location proposition R1 can be used to indicate whether the
robot is currently traveling on road R1. A sensor proposition
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RoadBlocked can represent the binary output (blocked/not
blocked) of a combined vision and lidar system that reasons
about the state of the road. A sensor proposition redLight can
represent the perception system alerting the robot that there is
a red traffic light at the intersection. An action proposition
stop can cause the robot to employ the breaks and stop its
motion. Examples for LTL formulas representing the desired
behavior are
• 2(R2 =⇒ (©R2 ∨©I1 ∨©I3)) expresses that from
R2 the robot can either stay in R2 or move to I1 or I3.

• 2(©redLight =⇒ ©stop) expresses that the robot
should stop at a red light.

• 23R4 expresses that the robot should eventually reach
R4.

In a finer abstraction, suppose R1 has two lanes. It can be
partitioned as shown in Figure 2(b) where cells C1,1, . . . , C1,L

are completely in the right lane, C2,1, . . . , C2,L cover the
center of the road and C3,1, . . . , C3,L are completely in the
left lane. Here, for each i ∈ {1, 2, 3}, j ∈ {1, . . . , L}, Ci,j

is a location proposition whereas oi,j , which represents the
existence of an obstacle in cell (i, j), is a sensor proposition.
Examples of LTL formulas are
•
∧

i,j 2
(
oi,j =⇒ ¬Ci,j

)
is the obstacle avoidance

requirement.
•
∧

j 2
(
¬(o1,j ∨ o1,j−1 ∨ o1,j+1) =⇒ (¬C2,j ∧ ¬C3,j)

)
where o1,0, o1,L+1 ≡ False is the staying in lane
requirement.

Since the robot does not control the environment proposi-
tions, the synthesis algorithm needs to take into account all the
possible values of redLight (in the coarse abstraction case),
oi,j (in the finer abstraction case) and the resulting behavior
of the system needs to satisfy the specification (LTL formulas
as listed above) for all these values.

B. From Discrete Solution to Continuous Execution

The synthesized automaton A that satisfies the LTL for-
mulas (synthesized based on [4]) is implemented as a hybrid
controller for the robot as described in Algorithm 1. Given A,
an LTL formula ϕinitial describing the initial condition of the
propositions in the current execution and an initial pose for the
robot p0, the initial state q0 ∈ Q is determined and the robot
actions are enabled/disabled. Then, at each iteration, the value
of the environmental propositions X determine what the next
state NxtState and the next region NxtReg ∈ γ(NxtState)
should be. The controller then invokes a continuous controller
that drives the robot towards the next region. If the robot
enters the next region, the current automaton state changes
and the appropriate actions are enabled/disabled. If the robot is
neither in the current region nor in the next region, which could
only happen if the environment violated its assumptions, the
execution is stopped with an error. Note that unlike traditional
discrete automaton execution in which transitions between
states are instantaneous, here the transitions usually correspond
to the robot moving between regions and therefore take time.

Simulations/bisimulations [5] provide a proof that the con-
tinuous execution preserves the correctness of the discrete

Algorithm 1 Continuous Execution of the discrete solution

procedure EXECUTE(A, ϕinitial, p0)
q0 ← {q | γ(q) |= ϕinitial}
CurrState← q0

CurrReg ← ri ∈ γ(q0)
CurrOutput← {a1, a2, · · · } ∈ γ(q0)
ActivateDeactivateOutputs(CurrOutput,Y)
p← p0

while 1 do . Infinite execution
InputV al← Value of sensor propositions X
NxtState←

GetNxtState(A, CurrState, InputV al)
NxtReg ← ri ∈ γ(NxtState)
p← ApplyController(CurrReg,NxtReg, p)
if p ∈ Region corresponding to NxtReg then

. Automaton transition
CurrState← NxtState
CurrReg ← NxtReg
CurrOutput← {a1, a2, · · · } ∈ γ(CurrState)
ActivateDeactivateOutputs(CurrOutput,Y)

else if p ∈ Region corresponding to CurrReg then
. No transition

Continue
else

ERROR - No legal automaton state
end if

end while
end procedure

plan. Informally, for the discrete solution to be implementable,
we require a set of continuous controllers that are able to
correctly implement any discrete transition in the controller
automaton. For example, if there is a transition from a state
in which C1,1 is true (the robot is in cell C1,1) to a state
in which C1,2 is true, there must be a controller able to
drive the robot from any point within cell C1,1 across the
boundary to cell C1,2 without going through any other cell
along the way. Clearly, the abstraction of the robot dynamics
has to be created such that the set of controllers exists and
furthermore, the robustness of such controllers will determine
the granularity of the abstraction. We refer to the continuous
controllers as ‘bisimilar’ controllers since they correspond to
a bisimulation between the discrete and continuous models;
every discrete transition in the abstraction can be implemented
in the continuous world (ensures correctness) and every con-
tinuous transition between regions in the workspace is encoded
in the discrete abstraction (ensures completeness with respect
to the partition).

Example 3: Going back to Example 2, Figure 3(a) depicts
part of the synthesized automaton generated based on the
specifications for the fine abstraction. Figure 3(b) displays
the resulting trajectory of the car. While driving along the
right lane, the car senses an obstacle. The execution of the
automaton (the red transitions) follows the transition that is
labeled with o1,3 and that causes the car to move to the next
lane.
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C1,1

C1,2 C2,1

o1,2

C1,3

o1,3

C2,2

C2,3 C3,2

o2,3

(a) Snippet of the synthesized automa-
ton. The red transitions correspond to
the specific run.

C1,1 C1,2 C1,3

C2,3C2,2C2,1

C3,1 C3,3C3,2

(b) Example execution,
in which an obstacle is
detected in cell C1,3

(o1,3 becomes true).

Fig. 3: Automaton and execution of the behavior of an
autonomous vehicle from Example 2.

C. Challenges

The two main challenges for this type of formal approach
are (a) finding a suitable abstraction that allows the problem
to be encoded and solved at the discrete level while being
correctly implementable in the continuous domain and (b)
dealing with the state explosion problem. These two chal-
lenges are clearly related since the coarser the abstraction, the
more compact the state space and vice versa.

In the following sections we illustrate this tradeoff in the
context of Example 1. First we discuss an approach that relies
on a coarse abstraction and a set of robust continuous feedback
controllers thus allowing the full controller to be synthesized,
i.e., every possible environmental behavior and the correct
corresponding robot control is encoded in it. Furthermore, we
show an example in which the specification can be naturally
decomposed and synthesized into several automata such that
the sequential execution satisfies the original specification,
thus mitigating the state-space explosion problem. Then, we
describe an approach that relies on a fine-grain abstraction
that captures more detailed specification and that employs
a receding horizon framework to alleviate the associated
computational complexity of LTL synthesis.

IV. COARSE ABSTRACTIONS: SYNTHESIZING THE FULL
CONTROLLER

One approach to deal with the challenges of synthesis is
to create a coarse abstraction for the motion of the robot
where the workspace is partitioned into different regions of
interest with high-level semantics such as roads, intersections
and parking spaces in the case of autonomous vehicles, or
rooms and hallways in the case of a robot operating indoors.

As described above, the model (abstraction) of the robot
motion in the workspace is captured in the LTL specifica-
tions and is embedded in the synthesized discrete automaton,
restricting the motion of the robot. In order to generate the
continuous control for the robot, there must be a set of
controllers that are able to continuously implement every
discrete transition of the discrete automaton. In general, given
an abstraction, finding such a set of controllers for robots
with arbitrary complex dynamics is an unsolved problem.
However, there have been several control schemes developed

for different dynamics such as fully actuated point robots [29]–
[31], nonholonomic [32], [33] and groups of robots [34]. In the
context of an autonomous vehicle, the work of Conner et. al.
[35] can be used to generate a pallet of local control policies
for nonholonomic, convex-bodied vehicles that correspond to
driving in a lane, turning at an intersection and performing a
parallel parking maneuver. The policies can be automatically
instantiated over a known map [23], [36].

Revisiting Example 1, we now show how the high-level
behavior of the robot can be captured if one assumes the
existence of robust feedback controllers that are able to drive
a nonholonomic vehicle along roads and through intersections
(turn left/right) as discussed above. Specifically, here we focus
on the high-level behavior of the vehicle: correctly traversing
4-way stop intersections, exhibiting e-stop behavior, avoiding
obstacles and road blocks and going through a prescribed set
of checkpoints [19].

Framing the problem in the context of the DUC, for
each mission the robot was given two text files describing
the challenge. The Route Network Definition File (RNDF)
contains the description of the course, road segments, lanes,
waypoints and locations of stop signs and checkpoints. The
second file, given to the team five minutes before the start
of the mission, is the Mission Data File (MDF) containing
the sequence of checkpoints to be traversed together with
speed limits for the different road segments. In addition to
this, the robot was expected to follow the California traffic
laws regarding right of way, etc. In [19] we have shown how
the DUC mission can be encoded in structured English that
was then transformed to LTL formulas and synthesized into
a correct-by-construction controller. There, in order to deal
with the state explosion problem, we decomposed the problem
into four sets of disjoint specifications and then generated four
automata that, when composed, generated the correct behavior.
Figure 4 shows the structure of the composed automaton. Note
that the road behavior layer was synthesized once and could be
reused as long as the traffic laws did not change. The driving
control, which included the motion abstraction as encoded in
the RNDF and the checkpoints encoded in the MDF, was
generated for different such files.

Fig. 4: Structure of discrete automaton for the DUC example

Figures 5 and 6 depict simulations of the synthesized
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system. Since the focus was on the high-level behavior (i.e.,
robust feedback controllers were assumed), the dynamics of
the vehicle were abstracted by motion on a line representing
the road. Figure 5 depicts the behavior of a robot on one of
the National Qualifying Event (NQE) maps, area A, where the
robot had to go through two checkpoints (denoted by black
circles) as many times as possible. In this simulation, the robot
detects an obstacle and after waiting for a predefined time
decides that the road is blocked and moves on to an alternate
route. Figure 6 depicts the behavior of the robot in area C of
the NQE. There the robot exhibits appropriate behavior at a
4-way stop first allowing the green car to go through and then
moving through the intersection.

We note that the controllers used in the simulation were au-
tomatically generated from the same set of LTL specifications
and the appropriate RNDF and MDF files. The behavior is
different in part due to the information the robot receives at run
time such as obstacles and cars at intersections. Furthermore,
any desired change in the high-level behavior is simple to
implement (change some of the sentences) and the correctness
guarantees are preserved.

(a) Stopping due to obstacle
(robot stopped is indicated by red
triangle)

(b) Timer timed out. Obstacle is
determined to be a blocked road

(c) Robot takes a different route (d) Block cleared

Fig. 5: Encountering a temporarily blocked road

Tool: We have built Linear Temporal Logic MissiOn Plan-
ner (LTLMoP) [37], an open-source Python-based toolbox for
the design, synthesis and implementation of high-level robot
control from structured English specifications. Some of the
toolbox features are as follows.
• Modular design to accommodate different research ad-

vancements (such as in the control, language interface,
automata synthesis, etc.).

• A graphical user interface for drawing the regions of
interest of a workspace (RegionEditor),

• A structured English grammar for writing specifications
that supports non-projective locative prepositions such as
‘between’ and ‘within x’ [38],

• Connection to Player/Stage [39] for simulating and con-
trolling physical robots.

(a) Initial locations of cars. The
robot is depicted using a blue
square

(b) Both the robot and the green
car stop (robot stopped is indi-
cated by red triangle)

(c) The green car moves (d) The robot moves

Fig. 6: 4-way stop behavior

Figure 7 depicts several screen shots of LTLMoP
and a photo of a robot being controlled by it.
Videos showing LTLMoP in action can be seen at
http://www.youtube.com/user/ASLCornell.

(a) SpecEditor, the main window
in which the propositions are dis-
played, the specification written
and a log of the automaton syn-
thesis displayed. All features are
accessed through this window.

(b) RegionEditor, a graphical user
interface for drawing the regions
of interest and boundary of the
environment.

(c) Simulation window. The robot
is the white circle moving around
the map. The log window provides
the state of the actions and other
information.

(d) a Pioneer robot being controlled
from LTLMoP. The robot reacts
correctly to the information it gath-
ers about the environment at run-
time.

Fig. 7: Screen shots of LTLMoP (images from [37])

V. FINE ABSTRACTION: RECEDING HORIZON FRAMEWORK

To illustrate the state explosion problem, we revisit the
autonomous driving problem of Example 2. Consider the case
where the road is partitioned as in Figure 2(b). Suppose the
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car starts in cell C1,1 and the destination is the union of C1,L,
C2,L and C3,L. In this problem, there are 3L23L possible
states of the system. The computational complexity of the
algorithm presented in [4] is O(|V|3) where |V| is the size of
the state space, which, in this case, is exponential in L. This
type of computational complexity limits the application of LTL
synthesis to relatively small abstractions. Furthermore, when
the complicated dynamics of an autonomous ground vehicle
needs to be incorporated, the road may need to get further
discretized [25], resulting in an even larger state space.

In many applications, however, it is not necessary for the
robot to plan for the whole execution, taking into account all
the possible behaviors of the environment, since a state that is
very far from the current state of the robot typically does not
affect the near future plan. In the context of the autonomous
driving problem of Example 2, under certain conditions, it
may be sufficient for the robot to plan out an execution for
only a short segment ahead and implement it in a receding
horizon fashion, i.e., re-compute the plan as the robot moves,
starting from the currently observed state (rather than from all
the possible initial conditions).

In [20], sufficient conditions that ensure that this receding
horizon implementation preserves the desired system-level
properties are presented. This framework reduces the com-
putational complexity of the synthesis problem by essentially
breaking the original problem into a set of smaller problems
of shorter horizon. The size of these smaller problems depends
on the horizon length. For example, consider the autonomous
driving problem of Example 2 where the robot starts in cell
C1,1 and the destination is the union of C1,L, C2,L and C3,L.
Suppose the horizon length is l (i.e., the robot plans for l
cells ahead). Then, the state space for each short-horizon
problem contains at most 3l23l states (whereas the size of
the original problem is 3L23L). Hence, the horizon length
should be made as small as possible, subject to the realizability
of the resulting short-horizon specifications. A horizon that
is too short typically renders the specifications unrealizable.
For the previously mentioned autonomous driving problem, it
was shown in [20] that all the short-horizon specifications are
realizable with l = 2. Hence, the size of the state space for
each short-horizon problem is at most 384 regardless of the
length L of the road while for L = 100, the size of the state
space of the original problem is on the order of 1092 and it
increases exponentially with L.3

The correctness of this receding horizon framework relies
on a partial order relation among the discrete states. The notion
of a receding horizon invariant, a proposition that needs to
remain true throughout the execution, was introduced in order
to ensure that a provably correct plan exists when the robot
reaches the end of the current horizon and needs to compute a
new plan (i.e., the robot does not end up in a “bad” state where
it cannot proceed without violating some desired properties).

A graphical description of the receding horizon framework

3Note that the specification considered in [20] also includes intersection
rules, which are not included in the straight road scenario considered here.
Hence, the size of the state space reported in [20] is slightly larger than the
size of the state space of the problem considered here. However, the same
horizon length applies for both scenarios.

is illustrated in Figure 8 for a special case where there is
only one destination. First, a partial order relation �ϕ between
the discrete states needs to be established such that for any
destination state νk, νk ≺ϕ νi for all i such that νi is not
the destination. The disjoint sets W0, . . . ,WM can then be
constructed such that for any discrete states νi, νj ∈ Wk, k ∈
{0, . . . ,M}, νi =ϕ νj and W0 only contains the destination
states. Finally, a map F : {W0, . . . ,WM} → {W0, . . . ,WM},
which captures the horizon length, and a receding horizon
invariant Φ need to be defined. The receding horizon approach
works as follows. Suppose, for example, that the initial state
of the system is ν1. Since ν1 ∈ W4, the robot synthesizes
an automaton satisfying the short-horizon specification where
(a) the initial state is assumed to be in W4 and satisfies Φ,
(b) the environment is assumed to satisfy the assumptions
stated in the original specification, and (c) the original safety
properties are satisfied, Φ holds throughout an execution, and
the robot eventually reaches a state in F(W4). The robot then
executes this automaton until it reaches a state νj ≺ϕ ν1. At
this point, the robot computes an automaton for the short-
horizon specification associated with the initial state νj . This
process is then repeated until the robot reaches ν10, which
is the destination. We refer the reader to [20] for a detailed
discussion on this receding horizon framework, including an
extension to the case where there are multiple destinations that
may be reached in an arbitrary order.

ν1

ν2

ν3

ν4

ν5 ν6 ν7

ν8

ν9

ν10

W0

W1

W2W3

W4

Fig. 8: A graphical description of the receding horizon frame-
work for a special case where there is only one destination.
ν1, . . . , ν10 are the discrete states.

Computation of the horizon length, partial order relation
and receding horizon invariant requires insights for each
problem domain. Automatic construction of these elements is
subject to current research. Reference [20] describes automatic
construction of certain elements, given other elements, e.g.,
automatic computation of the horizon length and partial order
relation, given a receding horizon invariant, and automatic
computation of the receding horizon invariant, given a horizon
length and partial order relation.

The receding horizon approach is not complete. Even if
the original specification is realizable, there may not exist
a combination of horizon length, partial order relation and
receding horizon invariant satisfying the sufficient conditions
presented in [20]. Nevertheless, its successful applications to
autonomous driving problems have been illustrated in [20],
[25], [40]. Examples of the results are provided in Figure 9.

Tool: TuLiP [3], a Python-based toolbox for embedded con-
trol software synthesis, implements the previously described
receding horizon framework. The key features of TuLiP
include embedded control software synthesis and receding
horizon planning. The synthesis feature relies on (1) generating
a proposition preserving partition of the continuous state space,
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,
Fig. 9: Simulation results with (left) no road blockage, (right)
a road blockage on the middle road. The corresponding movies
can be downloaded from http://www.cds.caltech.edu/tulip.

(2) continuous state space discretization based on the evolution
of the continuous state [40], and (3) digital design synthesis.
JTLV [4] is used as the underlying synthesis routine.

Currently, TuLiP handles the case where the continuous
state of the robot evolves according to discrete-time linear
time-invariant dynamics: for t ∈ {0, 1, 2, . . .},

s[t+ 1] = As[t] +Bu[t] +Ed[t], u[t] ∈ U , d[t] ∈ D, s[0] ∈ S

where S ∈ Rn is the continuous state space, U ∈ Rm and D ∈
Rp are the sets of admissible control inputs and exogenous
disturbances, s[t], u[t], d[t] are the continuous state, the control
signal and the exogenous disturbance, respectively, at time t.
U ,D,S are assumed to be bounded polytopes.

Successful applications of TuLiP include autonomous driv-
ing [25], vehicle management systems in avionics [41] and
multi-target tracking [42]. Other simpler examples are in-
cluded in the current release of the toolbox.

VI. CONCLUSIONS AND FUTURE CHALLENGES

In this paper we presented an overview of how temporal
logic synthesis, coupled with abstractions and continuous
bisimilar controllers can be used to generate high-level, reac-
tive robot control. We illustrated the ideas using the DARPA
Urban Challenge mission and we presented two approaches to
dealing with the inherent state explosion problem.

There are several directions worth pursuing in the context
of logic synthesis for robot control. These include relaxing
different assumptions such as perfect sensing and actuation,
addressing the question of optimality, dealing with uncertainty,
increasing the size of systems and specifications that can be
synthesized, and finding appropriate abstractions based on the
robot dynamics, workspace and mission.
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