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Abstract 
Safety-compromising bugs in software controlled systems are often also hard to detect. In one of the 

2007 DARPA Urban Challenge vehicles such a defect remained hidden in more than 300 miles of test 

driving and hours of extensive simulations, to manifest for the first time in a particular physical 

environment during the competition which led to a safety violation and its disqualification. With this 

incident as an example, here we discuss formalisms and techniques that are now available for safety 

analysis of cyber-physical systems (CPS). Starting with simulation-based approaches, we turn to more 

formal approaches, and discuss the emerging area that attempts take advantage of both. We highlight 

their merits and the limitations, and identify open problems the resolution of which will bolster the 

development of reliable safety-critical cyber-physical systems. 
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1. Introduction 
Turning left during the third round of the 2007 DARPA Urban Challenge, Alice---an autonomous Ford 

Econoline van dangerously deviated from the computer-generated path and started stuttering in the 

middle of a busy intersection. Earlier in the competition, Alice had completed two rounds of missions 

involving on and off-road driving, parking, merging, and u-turns, while obeying traffic rules---all with 

style and with no human driver. A sure testament to 15 months of programming, debugging, and test-

driving by a team of 50 students and researchers from Caltech, JPL and Northrop Grumman. Alice's 

onboard hardware included 10 cameras, 8 LADARs, 2 RADARs, an inertial navigation system, 2 Pan-Tilt-

Units, 25 CPUs and actuators for the steering, throttle, brake, transmission, and ignition. The software 

included the sensing and the control systems, with 48 individual programs and more than 100 

concurrent threads. The control system (see Figure 1) has modules for making actuation decisions at 

different spatial and temporal scales based on the processed data streams. The Mission Planner, for 

instance, computes routes for completing high-level missions using a roadmap, the Traffic Planner 

ensures traffic rule conformance based on finite state machines, the Path Planner generates waypoints 

based on inputs from the upper levels and obstacles, and finally, the Controller computes acceleration 

and steering signals for the vehicle to follow the waypoints. For safety, each component was ``unit-

tested'' against reasonable-sounding but informal assumptions about the other components and its 

physical environment. 

An unforeseen interaction among the control modules and the physical environment, not witnessed in 

more than 300 miles of autonomous test driving and hours of extensive simulations, had led to this 

safety violation and Alice's unfortunate disqualification. What happened? A reactive obstacle avoidance 

subsystem (ROA) was implemented to rapidly decelerate Alice for collision avoidance. Under normal 

operation, ROA would send a ``brake'' command to Controller when Alice got too close to an obstacle or 

when it deviated too much from the planned path. Controller would then rapidly stop Alice and the Path 

Planner would generate a new path. It turns out that, for protecting the steering system, the interface to 

the physical hardware limits the rate of steering at low speeds. If the Path Planner produces sharply 

turning paths at low speeds, then Alice is not able to follow and it deviates. These two effects interacted 

during the third task which involved making sharp left-turns while merging into traffic. Alice deviated 

from the path; the ROA activated and slowed it down; Path Planner generated a new path with an even 

sharper turn to try a successful merge, and this cycle continued taking Alice to the verge of a collision. 

 

 



 

Figure 1. Clockwise from top left: (1) Alice, Team Caltech's entry in the 2007 DARPA Urban Challenge. (2) The control protocol 
stack. (3) Controller-Vehicle automata and their interface with Path planner and Brake controller. (4) A Simulink/Stateflow 
model. 

It is clear that unforeseen interactions between cyber and physical components can wreak havoc in 

critical systems from individual control systems in vehicles, factories, to networks of systems in air-

traffic control and the power grids. The Alice incident illustrates that interaction of software, hardware 

and physical components (e.g., the ROA and the steering protection) outside of the informally assumed 

environment is often source of such surprises. One insight from our postmortem analysis of the incident 

(presented in [18]) suggests adoption of open modeling---which forces the designers of a module to 

precisely pin down all (possibly nondeterministic) behavior of its environment. Then, the component in 

question is designed and tested in the context of that environment.  Analysis based on open models 

exposes unmodeled or unforeseen interactions. Open models necessarily introduce uncertainties in the 

form of environmental inputs. This nondeterminism increases the size of the space of possible behaviors 

one has to consider in the safety analysis, but, fortunately, the state-of-the-art tools from formal 

methods and control theory are well poised to  tackle such models. Based on open models and utilizing 

these analysis techniques we have been able to diagnose design defects in Alice, air-traffic control 

protocols, and various other control systems.  



In this article, in the context of the analysis of Alice we discuss formalisms and techniques that available 

for safety analysis of cyber-physical systems (CPS). Starting with simulation-based approaches, we turn 

to more formal approaches, and discuss the emerging area that attempts take advantage of both. We 

highlight their merits and the limitations, and identify open problems the resolution of which will bolster 

the development of safety-critical cyber-physical systems. 

2. Modeling Cyber-Physical Systems 

2.1 Simulation Models 
Tools like LabView, Simulink and Stateflow have made the creation of complex CPS models from simpler 

building-blocks a standard skill for today's engineering graduates. A Simulink-Stateflow model describes 

a CPS as a collection of interconnected functional blocks---for example, integrators, switches, and filters, 

and hierarchical state machines. Figure 1 shows a model of a part of Alice's control system. These 

models are primarily used for generating simulation traces. Simulink's simulation engine generates runs 

of a deterministic model by numerically integrating the model equations over time with a user-specified 

method. Though simulation-centric tools are indispensable for rapid-prototyping, design, and 

debugging, they are limited in providing safety guarantees. Naively running a finite number of 

simulations cannot eliminate the possibility of safety violations, even for finite state models that run for 

a long time. The simulation traces record state information only at discrete points in time. Whatever 

happens in-between requires additional analysis. Nondeterminism---a key feature for capturing 

uncertainty and underspecified open models---is not supported in these tools either. Finally, even for 

deterministic systems, numerical errors may cause the simulation points to deviate arbitrarily from the 

actual states visited by the system. While sophisticated simulation engines vary the sampling period and 

different numerical techniques for minimizing error in each simulation step, it is tricky to obtain global 

error bounds, especially in models where the system dynamics changes discontinuously. When Alice's 

Controller changes the steering input to the vehicle based on a new waypoint, for example, it does so in 

single discrete steps. Such discontinuous changes are commonplace in CPS models.  

Two research directions aim to make simulation tools useful for safety analysis: First, expressive 

simulation environments have been built from the ground-up, such as Modelica [14] and Ptolemy [12], 

in which the models have precise semantics, and therefore, can be used for rigorous safety analysis. The 

second approach recognizes the widespread adoption of Simulink, and aims to obtain safety guarantees 

from the imperfect simulations. The latter   combines formal static analysis of the models with the 

dynamic, inaccurate information of the simulations and is discussed further in Section 3. 

2.2 Formal Models and Properties 
Reconciling the differences between the discrete models used for computer hardware and programs 

and the continuous models used for dynamical systems, the hybrid systems community has developed 

several frameworks for modeling and analyzing CPS. The differences between these frameworks have to 

do with their origins and the types of analysis they support. The switched system [13] and the hybrid 

dynamical system [7] frameworks emerged from the control theory and are used for studying stability, 

robustness, controllability and observability. Computability have not been the focus and behaviors are 



described in terms of abstract mathematical objects. The Hybrid  Input/Output Automaton framework 

[10] emerged from the distributed computing literature. It supports open models, and has well-

developed theories for abstractions and composition. The popular the hybrid automaton framework of 

Alur, Henzinger et al.[1] was designed for studying automatic verification and decidability questions. 

Platzer's hybrid dynamic logic supports proof rules for reasoning about systems many identical 

components [16]. For this article these differences are less important than the shared principles. For 

concreteness, we consider the Hybrid  I/O Automaton (HIOA) framework.  

A HIOA is a nondeterministic state machine with well-defined input/output variables and actions. Its 

state can evolve through discrete transitions, as in a finite state machine, as well as through continuous  

trajectories which are solutions of differential equations. The behavior of the input variables and actions 

can be underspecified which enables one to write open models. The framework requires the models to 

be input enabled which essentially forces the modeler to write down how the automaton must react to 

any inputs from a given class. We describe simple HIOA models of the vehicle and Alice's controller. 

Vehicle.  

The state of an HIOA is described in terms of the valuations a set of state variables. For example, the 

Vehicle (see Table 1) automaton's the state variables include  the position of the vehicle in the plane 

     , its heading  , and its speed  . These variables are declared as outputs as we want them to be 

accessible to the Controller. Vehicle also has two input variables:  acceleration ( ) and steering angle 

( ). The trajectories of the state variables are defined in terms of differential equations (and inclusions) 

involving the state as well as the input variables. The key point is that for a given class of input signals 

for   and  , say,  piece-wise continuous signals, the differential equations are guaranteed to have 

solutions which define trajectories for        and  . This captures the notion that the HIOA model, here 

Vehicle, should be able to react to all possible behaviors of its environment namely the Controller. This 

input enabling requirement allows one to define the semantics of, and therefore analyze, open hybrid 

models that have underspecified input variables and transitions.  

 Controller. 

Table 1 shows the Controller model which periodically reads the state of the Vehicle and computes the 

acceleration and the steering. The controller also receives interrupts from the Path planner and the 

Brake controller. The interrupt information is recorded in state variables, which influence the 

computation of   and  .  

The variables of a Controller include the last sampled state information    ̅  ̅  ̅  ̅ , the sequence of 

waypoints provided by a planner path, a internal timer    , information received from the braking unit 

        , and other internal variables used for computing the controller outputs.  The periodic update 

is modeled by an urgent update action. By setting the stopping condition of the trajectories to be 

``     '', the     variable is prevented from increasing beyond   and the same condition enables the 

update transition.   

When this action occurs the clock is reset to zero and the outputs   and   are computed using some 

function of the input and the other state variables. The input actions plan and brake captures the 



interrupts received from the path planner and the brake controller. Since the occurrences of these 

actions are controlled by the Controller's environment, they can potentially occur at any time. Once 

again, the Controller is an open system and has well-defined behaviors in any environment in which it 

receives the appropriate input actions and variables.  

Table 1. Partial HIOA specifications of the Vehicle and the Controller. The details of the function f are omitted. 

Automaton Vehicle( ) 
variables 
  output                           
  input       
 
trajectories      
evolve 
   ̇         ̇        

   ̇   
 

 
                

  if             then  ̇      else  ̇      

Automaton Controller     
variables 
  output              
  input              

  internal                         ̅  ̅  ̅  ̅  
 
transitions 
  input plan 
    pre true 
    eff \\ update path  
 
  input brake 
    pre true 
    eff \\  update brakeReq  
 
  internal  update 
    pre       

    eff          ̅        ̅        ̅       ̅      
                                                

 
trajectories 

  evolve    ̇                      

Open Models and Nondeterminism. 

The HIOA framework supports modeling of open systems. Uncertainties and underspecification in the 

external environment and within the automaton itself are modeled as nondeterministic choices. Indeed, 

there are sources of nondeterminism in a hybrid model that do not exist in purely discrete models. First 

of all, the input transitions and trajectories are exogenous to the model, but the model should have 

well-defined behavior for any input from a reasonable class. Component failures and noise are often 

modeled as input transitions and variables as the automaton has very little control over them. Secondly, 

even without input variables, the differential equations and inequalities may permit multiple solutions 

over time. For example, a standard way of modeling a clock clk that is drifting with some bounded rate 

   is to write the differential inclusion           ̇       . This implies that along any solution of 

the system, starting from      , the value of      after time t is a point in the interval           

                    . Secondly, at a given state of an automaton there may be a choice between 

several discrete transitions or for some amount of time to elapse. This is exploited for modeling 

transitions with some uncertainty in the timing behavior. For example, relaxing the precondition of the 

update action for the Controller to               we could model a slightly less stringent time-

triggered controller which updates its output once every           time. In addition, as in the case of 



discrete models, there may be nondeterministic choices among multiple start states and multiple 

enabled actions in the initial state. 

Semantics: Executions, Reachability, Invariants, Safety, and Robustness 

We have introduced hybrid models through examples of Alice's subsystems. Now we introduce some 

concepts related to semantics of such models which will prepare us for the discussion of safety analysis 

techniques in Section 3. 

The semantics of a state machine-based modeling framework, such as HIOA, is defined in terms of states 

and executions. A state of the system is  defined by valuations of all the variables in the model. 

Predicates or constraints on the variables can be interpreted as sets of states. For example, the semantic 

interpretation of the predicate:                                is the set of states of the system 

such that the position is within   distance (measured by some metric     ) of the path. 

An execution of a HIOA is an alternating sequence of its transitions and trajectories. Figure 2 shows the 

plot of an execution with the backdrop of a left turn. The red-dots indicate the occurrence of brake 

action (triggered by the ROA) which then results in a new path (generated by the path planner), and a 

new controller output. The blue lines indicate the projection of the intervening vehicle trajectories on   

and  . 

As a hybrid automaton is nondeterministic, it has a set of executions which capture all its behaviors. A 

state is said to be reachable if there exists an execution which terminates at that state.  The set of all 

such states,       , is called the reach set. A safety property S is specified by a predicates on variables. 

We could assert that Deviation(2 m) is a safety requirement, meaning that the reach set of the system is 

contained in the set Deviation(2 m). 

An over-approximation of        is called an invariant set. Invariants can provide useful semantic 

information about a system. For programs for instance, states outside an invariant are never reached. 

This leads to a useful approach for proving safety: find or compute an invariant set that is disjoint from 

the given unsafe set (complement of the safety property). 

Reachability and invariance have their bounded-time counterparts. A state that is reachable within a 

time horizon of T is T-reachable and so on. We will say   is  -safe with respect to a set S within time T, if 

all states within distance   from some state reachable within time T  are within S.   is robustly safe, if it 

is  -safe for some  . Often, the verification approaches are designed to establish robust safety.   

Abstractions. 

A key benefit of formal modeling is that it enables one to precisely define abstractions. Semantically, a 

hybrid automaton   is an abstraction of another automaton   if every execution1 of   is also an 

execution of  . An abstraction   over-approximates the behaviors  , and therefore, if   is constructed 

to be more tractable than   then by proving its safety we can infer safety of  . The HIOA framework 

provides rules for establishing abstraction relationships between open models. However, even though 

                                                           
1
 In general, only the visible parts of the executions have to match-up, which provides more flexibility in defining 

what is important. 



this definition of abstraction in terms of the containment of executions, is useful for reasoning, it does  

not lead to algorithms for computing the abstraction  . Instead, one computes some sort of a  

simulation relations which encodes the abstraction. A forward simulation relation from   to   relates 

the variables of   and   such that for every transition and trajectory of  , there exists a corresponding 

transitions (or trajectory) of   which reserves the relation. Various different notions of forward and 

backward simulation relations have been developed for hybrid modeling frameworks. The importance of 

abstractions and simulation relations in automated safety analysis will become evident in the next 

Section.  

3. Safety Verification Tools and Techniques 
In this section, we discuss three approaches that are available today for rigorous correctness analysis or 

verification of safety-critical systems like Alice. Two classes of properties capture most of the common 

correctness requirements in systems, namely, safety and progress. Here we focus on the more 

extensively studied problem of safety verification and refer the interested reader to [5] for some recent 

results on verification of progress and stability. The tools and algorithms underlying these verification 

approaches have also been applied to synthesize controller code that is  correct by construction; for an 

overview of this growing area see [2] and [11].  

Safety or Invariance: Reach set of    
is contained in some safe set   or   never goes 
outside    

Example 1.The Vehicle-Controller system never 
deviates more than 1m from the straight line 
joining the successive waypoints (for any behavior 
of planner and brake controller).  
 
Example 2. No two aircrafts in an air-traffic 
management system ever come within d distance.  
 

Progress: For sets of states $I$ and $F$, every 
execution starting from $I$ reaches $F$ within 
bounded time.  
 

Example 1. Starting near a waypoint the Vehicle 
reaches the next waypoint within T time, provided 
there are no incessant brake requests; T depends 
current state, the waypoints, and the issued brake 
requests.  
 
Example 2. Starting from safe states, every aircraft  
eventually gets clearance to land.   
 

3.1 Automatic Reach Set Over-approximations 
The automatic procedure for proving that a hybrid model   is safe with respect to some unsafe set U 

involves (a) computing the (unbounded) reach set        of   and (b) checking that        and U are 

disjoint. If         is computable  then this procedure not only proves safety, but also whenever the 

sets are not disjoint, then the procedure finds bugs by giving executions that lead to U.  

Classes of decidable hybrid automata have been identified for which        can be computed exactly. 

These include hybrid automata with only clocks, automata with variables that only evolve at constant 



bounded rates and are reset whenever the rates change, and so called o-minimal and STORMED hybrid 

models. Other decidable classes are obtained when the number of continuous variables is small. The 

core idea in all of these results is a bisimulation argument which constructs a finite state machine (FSM) 

which can exactly mimic the transitions and the trajectories of the hybrid automaton    being analyzed. 

The reach set of this bisimilar FSM can then be computed by exploring its control graph to obtain 

      . There is a distinguished history of software tools like  UPPAAL, HyTech, d/dt, Checkmate, 

PHAVer, and the more recent SpaceEx which embody these reachability algorithms and  have been 

applied to successfully analyze the safety of  a variety of CPS models [8],[6]. In each step along the way, 

new insights about the data-structures (e.g., polyhedra, rectangles, ellipsoids) used for representing the 

partially computed reach sets have played an important role in improving the efficiency of the 

algorithms.  

For general CPS though, decidable hybrid automata models are few and far between. For most models 

with more than a small number of continuous variables and linear or nonlinear dynamics, computing 

       exactly is undecidable. Even for a decidable automaton, obtaining scalable exact reachability 

algorithms is a big challenge. The Vehicle-Controller model described above, for instance,  would 

require stretching the capabilities of current reachability tools. To address this, the reachability problem 

is relaxed to compute over approximations of        through abstractions.  

A specific type of abstraction is proposed by the hybridization scheme of [3] in which the complicated 

nonlinear dynamics of    is approximated by piece-wise linear or piece-wise rectangular dynamics in  . 

The state space of   is partitioned into regions, and within each region, the complex nonlinear vector 

field is over-approximated by a set-valued rectangular (or linear) vector field.  

Hybridization is one of several different methods for constructing property-agnostic abstractions. The 

partitioning and the over-approximation described above does not rely on the unsafe set U. In contrast, 

Counter-example guided abstraction refinement (CEGAR) algorithms which have been successful in 

software verification, constructs abstractions for proving or disproving a specific safety property.   

CEGAR starts with a coarse abstraction     of  ; in each iteration,         
 is computed and checked for 

safety. If    is safe then   is safe and the algorithm terminates. Otherwise   is unsafe and a  counter-

example   is produced (provided the        
 's can be computed). If    corresponds to a valid 

execution of   then one can immediately infer that   is unsafe. This is called the validation step. 

Otherwise,   is a spurious counter-example arising from the overapproximation in    and it is used to 

obtain a new refined abstraction     , and the procedure continues. If a CEGAR algorithm terminates 

with ``safe'' or ``unsafe'', the answer is correct, but it is guaranteed to terminate only if (a) the abstract 

automata are from a decidable class, (b) the validation step is computable, and (c) the refinement step  

eliminates enough spurious counter-examples to make progress towards a decision. The existing CEGAR 

algorithms for restricted classes of hybrid models show promise of improved scalability, however, 

termination guarantees are likely to be achievable only under additional robustness assumptions. For 

instance, termination may be guaranteed if the automaton   is not only safe with respect to U but is 

also robustly safe. When   is safe but not robustly safe, the algorithm may not terminate. Development 



of property-directed abstraction-refinement schemes for verification of nonlinear hybrid models 

remains an open problem.  

3.2 Finding Inductive Invariants with Human Guidance 
An alternative to automatically computing over-approximations of         or invariants of the given 

system model, is to find inductive invariants. An invariant   is inductive for the system   if (a) all start 

states of   satisfy  , and (b) starting from a state that satisfies   and following a transition or a 

trajectory,   continues to satisfy  .  Given a predicate  , checking whether it is an inductive invariant is 

typically an easier problem than computing the reach set.  For the discrete transitions, this involves 

symbolically executing the model for all possible transitions that are enabled from  . For the continuous 

trajectory, this can be achieved by checking that the vector field defining the evolution of   ``points 

inwards'' at the boundary of  . This so called sub-tangential condition can be checked symbolically 

without necessarily solving the differential equations.  

This is the approach we used in [18] for establishing the key safety properties of a corrected model of 

Alice. Often the initial guess   has to be strengthened by introducing constraints on the state variables.  

For example, for establishing that the deviation of the Vehicle-Controller model from the planned path 

is upper-bounded by some     , we also have to introduce bounds on the disorientation of Vehicle 

with respect to the direction of the path. The inertia of the vehicle, the limits on its maneuverability, and 

the controller periodicity require that for the deviation to be bounded the vehicle cannot be highly 

disoriented. Specifically, we defined a collection of predicates    (for each natural number k) that 

incorporates the following constraints:  

1. The deviation from the path is bounded by a constant   , for a constant        .  

2. The disorientation is small enough such that the steering angle computed by the controller (as a 

function of the deviation and disorientation) is in the range           for a constant    that 

does not exceed the physical limit of the vehicle steering capacity. 

3. The speed is bounded by a constant      . 

The collection of predicates    projected onto the deviation-disorientation plane is shown in Figure 2. 

Then, we showed that, provided (a) that the brakes are not triggered ``too frequently'',  (b) that the 

turns in the path are not ``too sharp'' compared to the length of the path and (c) that the execution 

speed of the controller is not ``too slow'' with respect to     , each    is in fact an inductive invariant of 

the Vehicle-Controller system. This establishes the bounded deviation (safety) property. The analysis 

makes the notion of too frequent, too sharp and too slow precise in terms of the vehicle and controller 

parameters. Checking inductive invariance of the    's using the sub-tangential condition is a routine 

exercise once the correct set of assumptions are in place.  As an added bonus, here, the invariants also 

aided the progress analysis. During each control period, as the vehicle makes progress towards the next 

waypoint, we show that under the above assumptions, it moves from    to      that is contained in   . 

That is, in executing a long segment, the vehicle converges to a small deviation and disorientation with 

respect to the path, and therefore, the instruction for executing a subsequent sharp turn does not make 

the deviation and disorientation grow too much. 



Towards Automatic Search for Inductive Invariants 

The above approach is applicable to a general class of open CPS models. Also, when successful it 

provides useful information about the system's behavior apart from just establishing safety. For 

instance, by checking inductive invariants for the open system---the vehicle and the controller---we 

derived restrictions on its environment, namely, the brake controller and the path planner, which were 

sufficient for safety. The main limitation is the first guess. Finding useful inductive invariants requires 

creativity and insights about the behavior of the system.  

 

Figure 2. Left: An execution of a Vehicle-Controller system with input $\act{brake}$ transitions. Right: The invariant sets for 
different values of deviation and disorientation. 

In addressing this issue, Sankaranarayanan et al. [17] have proposed several methods for finding 

inductive invariants of hybrid models automatically. In these approaches, the insights are encoded in the 

form of invariant templates. These templates define the possible shape of the invariants and have to be 

instantiated to find the actual invariants from that shape class. In [17], for example, the search for 

inductive invariants is seeded by a family of, in this case linear, template constraints    ̅  ̅          

 , where   ̅ and   are parameters to be synthesized. Then the boundary of the invariant set is given by 

the set of points  ̅ where            and the sub-tangential condition can be encoded as the 

constraint: 

    ̅  [             
           

  
    ]  

In this linear case, the Lagrange relaxation of the resulting linear programs can be solved for 

automatically finding linear invariants and in some cases even the strongest linear invariants. Several 

interesting open problem arise in this area in identifying subclasses of nonlinear models and more 

general templates for which the resulting set of constraints can be solved effectively to yield a richer 

variety of inductive invariants. 



3.3 Reaping Benefits of Simulations for Verification 
The final verification approach we will discuss takes us back to simulation. As mentioned before, 

simulation models are widely used and (possibly inaccurate) simulation traces are inexpensive to 

generate in a pragmatic sense. How can we overcome the semantic imprecisions and ambiguities of 

these simulation models, and use finite but possibly large number of simulations traces to obtain formal 

safety guarantees? The ``proofs from tests'' or ``verification from simulations'' paradigm has produced 

success stories in the hardware and software verification and now it is being developed for CPS 

[15],[19],[4],[9]. The key idea is to compute from an individual simulation trace (or a test) that starts 

from a single start state     a tube which contains all the executions of the system starting from an open 

ball around   . Since this ball has non-zero radius, from a finite number of simulation traces it is possible 

to compute tubes that over-approximate all executions from a set of initial states, and therefore, to 

verify safety from all initial states.  

The success of this approach for CPS hinges on being able to compute these tubes for hybrid models 

from simulation traces that only record discrete snapshots. The gaps in the trace have to be filled for 

constructing the tubes that are guaranteed to contain the executions. Further, as mentioned in Section 

2.1, the recorded traces from a state    may have arbitrarily large errors compared to the actual states 

that are visited in the execution starting from   . In [4],[9] it is shown how, for deterministic models, 

control theoretic properties of the models like stability, contractiveness, and continuity,  can be used for 

computing these tubes. For example, if the trajectories of the system are Lipchitz continuous or 

asymptotically stable, then the tube containing all executions starting from a ball around    can be 

computed in a straightforward manner. It is worth remarking that checking asymptotic stability of a 

dynamical system is in general not an easy problem, however, it is reasonable to expect that the 

simulation models are annotated with certificates that assure these control theoretic properties (e.g., 

Lyapunov functions, Lipchitz constants, contraction metrics etc.) hold. As long as the simulation model 

meets the annotations, for bounded time analysis, the soundness and the completeness of the 

procedure can be guaranteed, even if the exact formal semantics of the model is not known. 

Consider a deterministic hybrid automaton   with a set of initial states   , and an unsafe region U. 

Using the above approach for computing tubes, we can check whether   is robustly safe with respect to 

U up to a time bound T by simulating   from finitely many initial states. The stability properties ensure 

that for every     there is a computable     such that for any two executions starting within a  -

ball remain within an  -ball up to time T. If U is an open set of unsafe states,    a bounded set of initial 

states, then under certain mild assumptions about the continuity of the executions of   it can be shown 

that the the robust safety problem can be decided by simulating   from finitely many initial states. This 

approach has been explored in several papers and has been implemented in the Breach [4] and C2E2[9] 

tools. It offers a significant advantage over the reachability based approaches discussed in Section 3.1. 

First, those methods can theoretically only work for systems whose continuous flows are described by 

polynomials, and even then is unlikely to scale to large systems because of the need to reason about 

non-linear arithmetic. Finally, since simulation engines can work with systems with complicated non-

linear dynamics, and the subsequent analysis of simulation traces does not concern itself with the actual 

dynamics, this could potentially handle systems that cannot be handled by today's model checkers. 



Though this line of research is still in its early stages, but, the preliminary experimental results are very 

promising and handily outperform reachability-based tools in natural examples. Development of a 

simulation-based verification framework for nondeterministic models, possibly including actual 

controller code, remains an open problem. In particular, for distributed systems with message delays, 

clock skews, and scheduling uncertainties, handling nondeterminism poses major challenges in 

generating traces, in identifying useful annotations, as well as in developing effective safety verification 

algorithms. 

4. Concluding Remarks 
Our experiences with safety analysis of Alice and several other real world CPS models strongly suggest 

that component-level verification alone is not sufficient to guarantee safety. Open and formal modeling 

and verification should be applied to identify dangerous and unpredictable component interactions. The 

current state of verification tools provide several options for analyzing different kinds of models with 

different levels of investment. For systems with linear dynamics and a dozen or so continuous variables, 

completely automatic, safety analysis is becoming feasible on a modest verification budget. For more 

general models, mechanical verification guided by human inputs (e.g., in the form of  inductive invariant 

templates) is possible with a larger budget. Finally, widely adopted simulation models can be leveraged 

for obtaining bounded time safety guarantees for high-dimensional nonlinear models. While social, 

legal, and economic barriers remain for widespread adoption, we believe that computer-aided safety 

analysis tools are ready for entering engineer's inventory. 
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