
Encapsulated Path Planning for Abstraction-Based Control of
Multi-Vehicle Systems

Venkatesh G. Rao, Tichakorn Wongpiromsarn, Thientu Ho, Kimberly Chung and Raffaello D’Andrea

Abstract— We introduce an encapsulation approach to path
planning for multi-vehicle control that permits other decision
processes to work with simple, spatially-abstracted domain
models, and partially or wholly ignore obstacles, observation
uncertainty and vehicle dynamics. The encapsulation results
in formal domain representations called patch models that
generate path planning problems in two standard forms:
patch realization and differential patch realization, that we
formulate and address in this paper. We present enhancements
to existing ways of partitioning the path planning problem,
and also present enhancements for each component. Sufficient
conditions are presented showing that domains with a scale-free
relation between obstacle sizes and inter-obstacle separations
are suitable for abstraction-based approaches. Application to
multi-vehicle command and control is discussed.

I. INTRODUCTION

Path planning is a kernel control and computation
process in multi-vehicle systems. Other decision processes,
such as coordination, scheduling and planning must define,
constrain or make assumptions about vehicle motion to
achieve their effects. We present anencapsulationapproach
that permits other decision processes to encode their path-
planning needs in a simple, standard form, and partially
or completely avoid reasoning about obstacles, dynamics
or measurement uncertainty. This work is a component of
ongoing research in distributed command and control [1] and
has several sub-components, which are described in detail in
previous [2] and forthcoming [3], [4] papers. The goal of this
paper is to provide an integrated system-level description of
the technical approach, summarizing component technology
and treating system-level issues not addressed elsewhere.

Encapsulation is a design principle in system architecture
[5] that achieves openness and robustness by hiding complex
subsystems under an abstraction layer. Familiar examples
are packetsin communication andobjectsin programming.
Complex systems, characteristically [6], display coupling
between subsystems, making perfect encapsulation difficult.
Significant benefits, however, are realizable through partial
encapsulation.

Here, we seek to encapsulate acontrolledfunction: vehic-
ular motion. Our approach is based on spatial abstraction,
and permits upstream decision processes, in particular human
interaction and AI processes, to use a domain model that is
much simpler than the one used for detailed path planning.
The resulting formalism ofpatch modelsis discussed in a

This work was supported by the AFOSR MURI on Cooperative Control
The authors are with the School of Mechanical and Aerospace

Engineering, Cornell University, Ithaca, NY 14853. Correspondence:
vr47@cornell.edu

Fig. 1. Screenshot ofPatchworks for a single distributed command
and control (C2) node, showing spatially abstracted view (top left), patch
velocity profiles (bottom) and patch interactions (left). Patches (moving
polygons) represent both vehicle teams and terrain features.

companion paper [1] and has been implemented in a proto-
type multi-vehicle command and control system,Patchworks
(Fig. 1). In this paper, we address path-planning problems
generated by such abstraction-based systems. The problems
are also of interest in their own right, since they belong to the
insufficiently-studied class of path planning problems with
time-dependent state constraints. The approach is suitable
for domains, such as deserts and sparse forests, that have
certainabstractabilityproperties that are characterized later
in the paper.

Path planning has fascinated researchers since Euler solved
the first non-trivial case, theBridges of Konigsbergproblem,
in 1736, and has achieved canonical status in at least four
fields. In control theory, it takes the form of the standard two-
point boundary value problem (TPBVP) [7]. In robotics [8],
the Piano Mover’sformulation is central [9]. In operations
research [10], shortest-path graph algorithms are fundamen-
tal, and in computer science, the classical problem is that of
the pebble automaton[11]. Problem cases may vary from
trivial to PSPACE hard [8], [12], [13].

The focus in this paper is on path planningsystemsrather
than particular cases of the path planningproblem. A path
planning system must solve all the instances of problems that
may occur in a particular application domain. The domains
of interest in this paper aremulti-vehicledomains, such as
battlefields. These domains requirepredictability in motion
to enable coordination among vehicles, and between vehicles

and humans. Good predictability is hard to achieve in the
presence of unknown obstacles, poor communication and
mutual observation constraints. In our work, we address these
factors usingspatial abstraction. Abstraction-based decision
processes [14] lead to problems ofrealization. A realiza-
tion process incorporates into partial action specifications
the details that were ignored in abstract decision-making.
Realization problems are the concern of this paper.

The original contribution of this work comprises three
elements. First, we present the first systematic encapsulation
of the path planning function suitable for multi-vehicle
systems. Second, we make several enhancements to both
the system and component-level design of decomposition-
based path planning methods. Finally, we provide a precise
characterization, through sufficient conditions, of domains
that support abstraction-based path planning.

II. PATCH REALIZATION PROBLEMS

Patch models are computer representations of two-
dimensional multi-vehicle domains that use a primitive ob-
ject, thepatch, to represent all entities. Patches are polygons
that move with piece-wise constant velocities along piece-
wise linear trajectories. Vehicles controlled by a particular
command and control (C2) decision node must track the
patch containing them, as they move (Fig. 1). Humans and
AI processes achieve their objectives by manipulatingcom-
mand reference modelsbuilt from patches. Informally, patch
models permit vehicle control to be as simple as drag-and-
drop operations with icons on a GUI such as Fig. 1. Under
favorable conditions, patches can pass “through” obstacles
and hide the effects of vehicle dynamics and uncertain
observations. This capability yields simple yet expressive
abstract models with sufficient predictive power to support a
rich variety of client decision processes [1].

We consider two standard-formpatch realization prob-
lems, instances of which are generated by an evolving
abstract patch model (Fig. 1). The first problem is to
compute a vehicle trajectory that stays within thetrace of
the moving polygon and satisfies end-time constraints. The
second, harder problem, is to compute a trajectory such that
the vehicle is inside the moving polygon atevery instant.
Formally, a patchP (t) is a convex polygon translating
with steady velocity,Vnom in the plane, defined by ver-
tices [x1(t), y1(t)), . . . , (xm(t), ym(t)], over a time interval
[t0, tf] (Fig. 2). We refer to the instantaneous polygon as
P (t) and define thetrace P ([t1, t2]) as:

P ([t1, t2]) =
⋃

t∈[t0,tf]

P (t) (1)

Patch Realization (PR):Let D be a connected subset of the
plane with obstacles represented by closed, simply-connected
setsR1, . . . Rn in D. Let (xi, yi) and (xf , yf) be points in
the free space,F ≡ D − (R1

⋃
. . .

⋃
Rn). Let P (t) be a

patch such that(xi, yi) ∈ P (t0) and (xf , yf) ∈ P (tf). Find

Fig. 2. Realization problems and solver architecture. Solving PR and DPR
can be informally understood as satisfying ‘group, drag and drop’ vehicle
motion commands issued by humans or automated processes, encoded by
the moving polygon above.

a trajectory

φ : [t0, tf] → F
⋂

(P ([t0, tf])

φ(t0) ∈ P (t0)
φ(tf) ∈ P (tf) (2)

realizable by the center of mass of a vehicle governed by
dynamic modelΣ.

PR requires the vehicle to stay inside the trace of the
patch at all times, and additionally, inside the instantaneous
position of the patch at start and end times. The complete
problem formulation depends on vehicle modelΣ. PR is a
suitable formulation for problems where a transit corridor
must be marked off in advance for the duration of the
mission to prevent conflict with other vehicles (such as
in friendly-fire prevention on battlefields). In PR, bounded
spatial deviations are acceptable, and in-mission delays are
acceptable so long as they are eventually compensated for.
In crowded multi-vehicle domains with tighter deconfliction
or coordinated motion constraints, even in-mission delays
are not acceptable, and this gives us thedifferential patch
realization problem:
Differential Patch Realization (DPR): Given a patch real-
ization problem, find a solutionφ that satisfies time-varying
constraint

φ(t) ∈ P (t) for all t, (3)

in place of the constraints in Eqn. (2).
Solutions to a DPR problem solve the corresponding PR

problem, but not vice-versa. Both are illustrated in Fig. 2.
The formulation does not commit to specific vehicle char-
acteristics or specific levels of pre-mission and in-mission
information availability. Problem instances can therefore
vary in complexity according to these factors. The methods
described in this paper are suitable for PR problems involving
car-like robots, and DPR problems for cases where dynamics

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Fig. 3. Abstractable domain constructed according to sufficient condition
in proposition 1 (appendix)

are trivial. Both full and partial pre-mission information cases
can be handled. PR and DPR cannot be solved in a vehicle or
domain independent way1, but they can bespecifiedwithout
regard to either, providing the basis for encapsulation.

For clarity, discussion of existence conditions for PR
and DPR is in the appendix, where we present a sufficient
condition for simple vehicles, showing that solutions for PR
exist in domains where obstacle sizes are related to inter-
obstacle distances in a scale-independent way. An example
domain constructed using this condition is in Fig. 3.

III. D ECOMPOSITION-BASED SOLUTION

As stated, PR and DPR are path planning problems with
time-dependent state constraints. A common partitioning of
the path planning problem [8] comprises map preprocessing,
geometric planning and kinodynamic planning. In this paper,
we extend this partitioning using components forin-process
map decomposition, geometric planning, kinematic planning
and dynamic planning, that are discussed separately in the
subsections that follow. The separation of kinematics and
dynamics and the allowance for in-process map decomposi-
tion provide the enhanced control authority required in multi-
agent applications. The solution process can be described by
the state diagram in Fig. 2, where nodes represent component
solvers. A taxonomy of process types can be constructed
using this state diagram, and typical cases are listed in Table
I. To solve PR, kinematics need be considered only to the
extent required in order to satisfy boundary constraints, and
the ‘K’ state can be omitted. In the next 4 subsections, we
discuss component-level innovations corresponding to the
computations required at nodesP, G,D andK. System-level
behavior is discussed in subsection III-E.

A. Adaptive, Human-Guided Map Decomposition

Map decomposition (more generally, configuration
space decomposition) is the process of generating a graph
that conforms to the free-space topology of a domain with
obstacles. A path found with shortest-path graph search
is only as good as the underlying decomposition. Voronoi
diagrams and cellular decomposition [8] are the two popular

1it is trivial to construct terrains (such as spiral mazes) or vehicle models
(such as a high turn-radius aircraft) to render any particular patch realization
problem infeasible. The intent in this paper is to take advantage of the large
number of cases where the realization problemsare solvable.

No. State Trace Instance type
1. CGDH One-pass PR solution
2. CGKDH One-pass DPR solution
3. CGPGDH PR with in-line map refinement
4. CGDGDH PR with geometric repair
5. CGDHDGDH Execution failure

with geometric repair
6. CGDGCGDH Failure with

repeat client invocation
7. CGDDH Local dynamic repair
8. CGPCPGD Human-guided map

processing

TABLE I

TYPICAL PROCESS TRACES IN PATH-PLANNING SUBSYSTEM

Fig. 4. Coarse, minimal decomposition and small connectivity graph

decomposition methods. In the latter, which we adopt, the
free space is decomposed into a number of cells with a
simple geometry. Our method, which uses variable-sized
rectangles, has three special features. First, it is constructed
to be usedduring path planning (case 3 in Table I), as well
as during pre-processing. The initial, minimal decomposition
can be locally improved in real-time to suit the problem.
Second, the method allows humans (or AI processes) to guide
the decomposition process (case 8 in Table I), by forcing
it to conform to artificial constraint boundaries. Third, the
method supports partitioning of very large maps intosectors,
by treating the boundary of each sector in a special way
to allow for ‘pasting’ of small maps into larger maps. This
provides support for distributed processing and localized map
management.

The detailed description of the decomposition algorithm
is in the appendix. Here, we briefly illustrate the first two
features. In-process resolution improvement is illustrated in
Figs. 4 and 5. For unconstrained problems, the minimal
decomposition is sufficient. For our application, the decom-
position must be locally fine enough to solve the PR problem.

The effect of human guidance in map decomposition is
shown in Figs. 6 and 7. In this case, with just 5 human-
added lines, the cluster of obstacles is efficiently isolated,
which leads to higher-quality paths on the resulting graph.
Other uses of this facility include creating decompositions
to conform to patch boundaries or virtual fences.

Fig. 5. High resolution decomposition and large connectivity graph

0 5 10 15 20 25 30

0

5

10

15

20

25

30

1

11

21

31

41

51

61

71

81

91

101

111

Fig. 6. Fully automated decomposition, note poor cluster isolation

B. Geometric Refinement and Repair

Once a suitable decomposition has been created, a path,
φ, must be found and passed on to the kinematic and dynamic
planners, which may return the solution for repair if it is
found to be infeasible. The initial path planning problem
is well-studied, and little innovation is required there. Our
implementation uses the shortest-path algorithm,A∗ search,
on the portion of the connectivity graph that is within the
trace of the patch. The only modification required is the
implementation of a method to prune the graph spatially (we
use Matlab’sinpolygonfunction).

The non-trivial problem is that of repair, which happens
when an edge of the graph on an initial solutionφ is rendered
infeasible. A repair problem instance is generated when a
downstream resolution algorithm fails or an execution failure
occurs (for example, process cases 4 and 5 in Table I). We
developed a lightweight, complete repair method called the
minimum-deviation hopperthat solves the repair problem
by deleting the failed edge from the graph and searching
locally for a way around it.Hopper performs remarkably
well compared to both replanning from scratch andA∗ repair.
Simulations were conducted with a range of map sizes from
20 × 20 to 70 × 70, with 30 problem instances in each
case. The results, in Fig. 8, show that computation time
tends to stay flat with increasing map size forHopper, while
increasing for the other two methods. This makes the method

0 5 10 15 20 25 30

0

5

10

15

20

25

30

1

11

21

31

41

51

61

71

81

91

101

111

121

Fig. 7. Human-guided decomposition: bold lines placed by operator to
isolate cluster

20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Map Size (NxN)

E
xe

cu
tio

n
T

im
e

(s
)

Mean Execution Time for Square Map of Sizes 20x20 to 70x70

A* replan
A* repair
Hopper
Fitted A* Replan
Fitted A* Repair
Fitted Hopper

Fig. 8. Performance ofHopperalgorithm for local geometric repair

suitable for real-time implementation on small robots with
low processing/memory capabilities. The main advantage,
compared to existing repair approaches such asD∗ [15] is
that Hopperattempts to stay near the original path, making
it suitable for PR and DPR.

Hopper was also evaluated in domains with moving ob-
stacles, where the repair problems are generated due to
execution failure (case 5 in Table I) arising from temporary
blockage of a graph edge. The moving obstacles were
assumed to be neutral, randomly-moving entities that were
assumed to have their own obstacle avoidance mechanisms.
Hopper was compared to a simple wait-till-clear strategy
for various ratios of vehicle to obstacle speed. As might
be expected, it makes sense to repair a path if the moving
obstacles are much slower than the vehicle, and to wait
otherwise. This behavior is illustrated in Fig. 9, which shows
mission time vs. relative obstacle speeds for bothHopperand
wait-till-clear strategies. Further details of this work are in a
forthcoming paper [4].

C. Kinematics: The Spotlight Tracking Problem

Given a path,φ, on a graph that is within the patch
trace, a velocity planner must assign velocities to each leg

0 0.5 1 1.5 2
50

100

150

200

250

300
 Repair vs. Wait (V(robot)= 1)

Objects Velocity

T
im

e
S

te
ps

Repair
Wait

Fig. 9. Mission time comparison:Hopperrepair vs. wait-till-clear strategies
among moving obstacles

of φ. For DPR the velocity profile must, in general, be
time-varying. This problem has, to our knowledge, not been
studied. It falls into the class of path planning problems with
continuously time-varying state constraints. We refer to this
problem as theSpotlight Tracking Problem(STP), since it
can be visualized in terms of an agent attempting to stay
inside a moving spotlight while avoiding obstacles. STP can
be stated as follows:

Spotlight Tracking Problem: Given a poly-line pathφ of
length |φ|, within patch traceP ([t0, tf]), find v([tk, tk+1]),
the magnitude of the vehicle velocity for each time stepk
such that the vehicle position(x(tk), y(tk)) is insideP (tk)
for all k, where the patchP (t) is moving at velocityVnom.

The continuously-varying state constraint with a non-
smooth boundary makes closed-form analysis of this problem
extremely hard. The shortcomings of two obvious but naive
approaches highlight the sources of complexity. Consider the
following velocity-setting methods:

v([tk, tk+1]) = Vnom arccos(θ − θnom) (4)

v([tk, tk+1]) = Vavg = |φ|/(Vnom(tf − ti)) (5)

The method in Eqn. (4) attempts to speed up to compensate
for the difference in polygon heading (direction ofVnom)
and vehicle heading (the direction of the current edge onφ).
This method generates infeasible velocities for heading errors
greater thanπ/2. The method in Eqn. (5) uses a constant
average velocity based on the difference in nominal (patch
centroid) and actual (φ, vehicle) path lengths. This satisfies
PR, but fails for DPR due to non-uniform changes in path
geometry (such as can occur at terrain transition points).

Based on preliminary investigations, two variables,L1

and L2, the forward and backwardslack, representing the
arc-lengths from vehicle position to the leading and trailing
edges of the polygon, alongφ, were found to provide the
most natural means for control. Five heuristic methods were
constructed using these variables, of which one performed
significantly better than the others. This method (Method 5

0 2 4 6 8 10 12
0

5

10

15

20

25

30
Velocity limits vs. Path Ratios

Vehicle Path/Nominal Path

V
el

oc
ity

 (
m

/s
ec

)

Method 1

Method 2

Method 3

Method 4

Method 5

Avg. Velocity

Fig. 10. Velocity limits for profiles generated using five different methods;
Vnom = 1

in Fig. 10) has the governing equation:

v([tk, tk+1]) =
T1T2

∆t

T1 =
(

2L1(k + 1)
L1(k + 1) + v([tk−1, tk])∆t

)

T2 =
(

v([tk−1, tk])∆t + Vavg

2

)
, (6)

where Vavg is given by Eqn. 5, and∆t is the constant
time step (an estimate ofVavg can be used if the length
of path φ is not known in advance). At each time step,
the equation sets the velocity for the next time step using a
product of two terms, the first of which builds in sensitivity
to local path geometry by using the forward slack and the
distance traveled in the previous time step, while the second
term builds in sensitivity to global path characteristics. The
method can be shown to be uniformly bounded. Details of
this method, as well as the other four methods (which use
different subsets of available information) are in a companion
paper [3] and are not discussed here. Figure 10 shows the
maximum and minimum velocities produced by the five
methods over a large number of increasingly tortuous paths.
As can be seen, Eqn. 6 produces profiles with nearly linear
increase in maximum path velocity with increase in the
ratio of actual to nominal path lengths. Fig. 10 can be
used as an inverse look-up table that sets patch velocity,
Vnom, based on vehicle limits and terrain complexity. A
straightforward repair mode solution to STP, to adapt a
failed solution (occuring due to failure in dynamic refinement
for example) is to locally decrease the speed as far as the
available backward slack allows. This problem is yet to be
investigated.

D. Dynamic Refinement

Accommodating vehicle dynamics by constructing
paths out of arcs and straight line segments is not a new idea
[16], [17], [18], and using such paths to refine poly-line paths
found on graphs has also been considered [19]. Existing

literature, however, focuses on minimum length or minimum
deviation formulations. To solve patch realization problems,
we require control authority over speed and mission time
and applicability to real-time settings with limited look-
ahead. To achieve this, we constructed a sequential arc-fitting
procedure using a discounted look-ahead mechanism. The
method produces fast and aggressive turns (with large radii)
when the immediate horizon is benign, and becomes more
cautious (smaller turning radii) when sharp turns are right
ahead. The governing equations are:

ρi = ρmin + ki(ρi
max, ρmin)

ki = wθ

i+ni−1∑

j=i

cθ
0λ

j−i
θ θj + (7)

(1− wθ)
i+ni−1∑

j=i

cL
0 λj−i

L Lj , (8)

whereρi is the radius of the turning arc at theıth vertex, and
ρi
max, ρmin are radius limits (the upper limit being vertex-

dependent), computed to incorporate clearance, centripetal
acceleration and turn radius limits. The coefficientki deter-
mines the aggressiveness of the turn, and is computed as a
weighted sum of the line segment lengths and turn angles
for the nextni turns, with discounting parametersλθ and
λL. The parameterwθ provides control over the weighting
of future turn angles relative to segment lengths.L and θ
are the normalized length and turn variables, and thec0

coefficients normalize the sums. Details are in [2]. The main
capabilities of the method, can be succinctly captured in two
graphs. Figure 11 shows the tradeoff between failure risk
and speed. Failure occurs most commonly due to an over-
aggressive turn leading to violation of acceleration or turning
constraints in the next step. Alocal repair method (the self-
loop in theD node in Fig. 2) was implemented that operated
by reducing the turning arc radii at and near failure locations.
Repair reduces the realization percentage by 20-40% (Fig.
12). Details are in [2].

E. Subsystem Design

The problem of path-planning subsystem design has
largely been studied with respect to specific platforms. En-
capsulation provides one way to pose the problem formally
with generality, in terms of a state diagram (Fig. 2):
Path Planning Subsystem Design:Given the component
interconnection state diagram, construct a state transition
function Π such that for a class of domainsD, a class
of vehiclesV, and a class of patch realization problems
P, every problem instance will be solved withink state
transitions, with at mostr transitions from the nodeC.

The specification ofΠ (a repair mode selection rule) is
non-trivial, and a host of related problems can be posed,
concerning process convergence, live locks and dead locks,
which require discrete-event systems tools [20]. While con-
sideration of these issues is beyond the scope of this paper,
we briefly illustrate them by considering the simplest possi-
ble process trace: processes of the general formC(GD)iH in

5 10 15 20 25 30
11

12

13

14

15

16

17

18

Failure Rate (%)

A
ve

ra
g
e
 T

ra
ve

l T
im

e
 (

s)

ns = 1
ns = 3
ns = 5
ns = 7

Fig. 11. Risk vs. failure tradeoff in aggressive maneuvering dynamic
refinement

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

Minimum Turning Radius (m)

F
a
ilu

re
 R

a
te

 (
%

)

Vehicle: a
max

=1, v
max

==1

Without local repair

With local repair

Fig. 12. Resolution success change with implementation of local repair

0 2 4 6 8 10
65

70

75

80

85

90

95

Number of geometric repair attempts

P
e
rc

e
n
ta

g
e
 o

f
p
ro

b
le

m
 s

o
lv

e
d
 (

%
)

Fig. 13. Increasing resolution percentage inC(GD)kH iteration

the notation of Table I and Fig. 2. Figure 13 shows the results
for a set of problem instances where the dynamic refinement
fails initially for about 32% of the cases. Using the repair
mode of the geometric module, the resolution percentage
increases to about 93% ati = 3. In the remaining 7% of
cases, more complex solution process traces are required.
Here, ignoring the unresolved instances, for the worst case,
k = 2× i + 3 = 9, of which 1 is a human input (r = 1).

To solve DPR theK component is required, and the
D component must be capable of following time-varying
velocity profiles. Currently, our dynamic planner can only
vary averagemission speed, and therefore DPR cannot be
supported in general. The exception is the case of trivial
vehicle dynamics. The subsystem design problem is an open-
ended problem, the complexity of which depends on the size
of the classesV,D andP and the severity of the performance
requirementsr andk. The ratior/k achieved is a measure of
the amount of human oversight required for a given problem
solving load, and is an important limiting factor for semi-
autonomous multi-vehicle system design where the goal is
to maximize human productivity.

IV. CONCLUSIONS

We presented an encapsulation approach for path plan-
ning in multi-vehicle domains and formulated the resultant
standard-form problems. We presented a new partitioning
of the problem and described component-level solutions for
the map-partitioning, dynamic, and geometric components.
We also introduced a new kinematic planning problem,
the spotlight tracking problem, and solved it heuristically.
Favorable domains were characterized with sufficient condi-
tions showing that scale-free relations between obstacles and
obstacle separations support abstraction. System integration
results were presented for the simplest class of realization
processes, and the general features of the system design
problem were discussed.

Future work will focus on a more thorough examination
of different solution process patterns, formal analysis of
the system design problem, and integration with a real-time
sensor-based map-building module.

REFERENCES

[1] V. G. Rao and R. D’Andrea, “Patch models and their applications,” in
American Control Conference (submitted), 2006.

[2] T. Wongpiromsarn, V. G. Rao, and R. D’Andrea, “Two approaches
for dynamic refinement in hierarchical motion planning,” inAIAA
Guidance, Navigation and Control Conference, San Jose, CA, August
2005.

[3] K. Chung, V. G. Rao, and R. D’Andrea, “Predictable motion in
unpredictable domains: The spotlight tracking problem,” inAmerican
Control Conference (submitted), 2006.

[4] T. Ho, V. G. Rao, and R. D’Andrea, “Geometric path planning,” in
preprint, 2005.

[5] D. Parnas, “On the criteria to be used in decomposing systems into
modules,”Communications of the ACM, vol. 15, no. 12, pp. 1053–
1058, 1972.

[6] H. Simon,The Sciences of the Artificial (Third Edition). Cambridge,
MA: MIT Press, 1996.

[7] A. E. Bryson and Y. C. Ho,Applied Optimal Control. Hemisphere-
Wiley, 1975.

[8] J.-C. Latombe,Robot Motion Planning. Kluwer, 1991.

[9] J. T. Schwartz and M. Sharir, “On the piano mover’s problem: I. the
case of a two-dimensional rigid polygonal body moving amidst polyg-
onal barriers,”Communications on Pure and Applied Mathematics,
vol. 36, pp. 349–398, 1983.

[10] C. Papadimitrou,Combinatorial Optimization: Algorithms and Com-
plexity. Dover, 1998.

[11] M. Blum and D. Kozen, “On the power of the compass: Or, why
mazes are easier to search than graphs,” inProc. Annual Symposium
on Foundations of Computer Science, 1978, pp. 132–142.

[12] J. F. Canny, “The complexity of robot motion planning,” Ph.D.
dissertation, MIT, 1987.

[13] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in Proc. of the 20th IEEE Symposium on Foundations of Computer
Science, 1979, pp. 421–427.

[14] C. Knoblock, “Learning abstraction hierarchies for problem solving,”
in Proc. 8th Nat. Conf. AI., Aug. 1990, pp. 923–928.

[15] A. Stentz, “Optimal and efficient planning for partially known envi-
ronments,” inProc. ICRA, 1994.

[16] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,”American Journal of Mathematics, vol. 79, no. 3, pp.
497–517, 1957.

[17] J. A. Reeds and L. Shepp, “Optimal paths for a car that goes both
forwards and backwards,”Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[18] J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion
planner for nonholonomic mobile robots,”IEEE Transactions on
Robotics and Automation, vol. 10, no. 5, pp. 577–593, 1994.

[19] P. R. Chandler, S. Rasmussen, and M. Pachter, “UAV cooperative
path planning,” inProc. AIAA Guidance, Navigation and Control
Conference, Reston, VA, August 2000.

[20] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Kluwer, 2001.

APPENDIX

A. Realization Conditions

Let the two-dimensional domainD contain convex ob-
stacles represented by closed, simply-connected regions
R1, R2, . . . Rn in D. Let the rigid vehicleV have circumcir-
cle diameterdr and velocity-driven dynamicṡx = vx, ẏ =
vy. Let δRi, the boundary ofRi, be piece-wise differentiable,
with at most a finite number of corners. Let| · | represent
Euclidean distance. Define obstacle diameter and separation
as follows:

dmax(Ri) = max
p,q∈δRi

|p− q|.
dmin(Ri, Rj) = min

p∈δRi,q∈δRj

|p− q| (9)

Let R1, R2, . . . Rn be ordered such that

dmax(R1) ≥ dmax(R2) ≥ . . . ≥ dmax(Rn). (10)

This ordering can always be achieved, since there are a
finite number of obstacles. With these definitions, we state
a sufficient condition for realizability (the complete proof is
not presented due to space constraints).
Proposition 1 (Direct Realizability): If, for all i, j, there
exists a constantλ > 0 such that:

λdmax(Rn) > dr (11)

dmin(Ri, Rj) > 2λ min(dmax(Ri), dmax(Rj)), (12)

then all patch realization problems with the patch having in-
stantaneous in-circle diameter greater than

√
2dmax(R1)(1+

2λ) are realizable.

Obstacle diameter d
max

(R
i
),

expansion by distance λ d
max

(R
i
)

Original patch with in−circle
and nested square

φ

Square side >
(1+2λ d

max
(R

1
)

Fig. 14. Illustrative diagram for Proposition 1

Proof Sketch: We prove the result by induction. By the
in-circle condition a square of sidedmax(R1)(1 + 2λ)
and arbitrary orientation can be inscribed within any patch
P ′([t0, tf]). Let this derived patch,P ([t0, tf]) be a translat-
ing square, oriented such that one pair of sides is parallel
to the direction of translation. Let(xs, ys) and (xf , yf) be
arbitrary start and end locations within the free regions of
P (t0) andP (tf) respectively (the extension toP ′ is trivial).

For the induction hypothesis, assume that a piece-wise
smooth curveφ with a finite number of corners exists,
connecting (xs, ys) and (xf , yf), that is entirely within
P ([t0, tf]), and that does not intersect any obstacle with
dmax(Ri) > dmax(Rm), for somem. For eachRj , define
R′j to be the region generated by an outward normal vector
moving alongδRj , with lengthλdmax(Rj). R′j has at most
a finite number of discontinuities, by convexity ofRj . Let
these be bridged by arcs of radiusλdmax(Rj) centered about
the corresponding corner onδRj . The regionR′j will have a
diameter, defined as in Eqn. 9, of at most(1+2λ)dmax(Rj).
Let there bej = 1, . . . , k obstacles with diameterdmax(Rm),
such thatφ intersectsδR′j .

By the finite number of corners ofφ, there can only be
a finite number of intersections withδR′j . Let s1(j) and
s2(j) be the first and last points of intersection withR′j ,
in the positive direction of traversal ofφ. At least one of
the two arcs(s1(j), s2(j)) on δR′j must be entirely within
P ([t0, tf]), by Eqn. 12. Replace(s1(j), s2(j)) onφ with this
arc onδR′j . Repeat for allk obstacles, and call the resulting
curve φ′. By the separation condition (Eqn. 12),φ′ cannot
intersect any obstacle of diameter greater thandmax(Rm).
Sincek is finite, at most a finite number of new corners can
be introduced into the curve.

Given the induction hypothesis above, we can construct
a trajectory that avoids all obstacles by finding an initial
one. This is trivial, since the largest obstacle has diameter
dmax(R1). The straight line,L connecting (xs, ys) and
(xf , yf) has no corners and does not intersect any obstacle
of diameterdmax(Ri) > dmax(R1), since none exist. By
induction, a trajectory exists. By the construction and Eqn.
11, this path has minimum clearancedr/2 at all points.

function [Rects, V, Adj]=Decompose(A,Rects,V,Adj,δ)

if Rects==EMPTY
% Initial decomposition
[ObsCorners,ObsEdges]=FindEdgesCorners(A);
BorderEdges=BorderProc(A,ObsEdges,ObsCorners);
PartEdges=GetGuidance();
Edges={ObsEdges,BorderEdges,PartEdges};
for k=1: NumObsCorners
if cornertype(ObsCorners(i))==OPEN;
EdgeCornerChanges=RayProp(ObsCorners(i));
Update(Edges, Corners,EdgeCornerChanges)

endif
endfor
Rects=MakeRects(Edges,Corners);
endif

Rects=Refine(Rects,δ);
(V,Adj)=GetGraph(V,Adj,Rects,Edges);

Fig. 15. Outline pseudocode for Adaptive Decomposition Algorithm
showing main logical and procedural elements

Since the dynamics are single-integrator, this trajectory is
realizable. QED.

Proposition 1 provides sufficient conditions for path exis-
tence in free space. We omit a similarindirect realizability
property for graphs, due to space constraints. Domains
constructed according to Proposition 1 have a scale-free
appearance (Fig. 3), a result of the condition in Eqn. 12.

B. Decomposition Algorithm

The adaptive decomposition algorithm is rather long, but
much of the code is conceptually straightforward. We briefly
describe the novel elements with reference to Fig. 15. Given
a matrix A of zeros and ones, ones representing obstacles,
the algorithm first detects all obstacle corners and edges
(FindEdgesCorners). It then partitions a 1-unit wide border
(BorderProc) of the map in a consistent way, to enable
sector-wise handling of large maps by pasting along the
border.GetGuidance then allows the operator to intervene
and define guiding partitioning lines. Then, the automated
decomposition takes over by visiting each convex corner in
a loop and propagating a ray (RayProp) from it until it hits
a pre-existing obstacle or partitioning line. It then adds and
deletes appropriate edges and corners (Update). The process
repeats until all open corners are taken care of.MakeRects
and RefineRectscreate and refine rectangles by grouping
corners and breaking up existing rectangles respectively, and
GetGraph creates a graph by placing vertices at rectangle
centers and open boundaries. It is straightforward to show
that the decomposition algorithm Fig. 15 is complete. The
proof relies on the fact that the number of convex obsta-
cle corners in a map (non-convex free space corners) is
finite, and monotonically decreasing with the number of ray-
propagation steps in the main loop. Further details will be
described in a forthcoming journal paper.

