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Abstract—In this paper we describe an autonomous vehicle
that aims at providing shared transportation services in a
mobility on demand context. As the service is limited to a known
urban environment, prior knowledge of the environment can
be exploited, as well as existing infrastructure sensors such as
security cameras. We argue that utilizing infrastructure sensors
yields greater safety of operation and allows reduction in the
number of sensors required on-board, hereby reducing the cost
of the vehicle. We describe the role that infrastructure sensors
can play and show the resulting improved performances of the
system, supported by simulation and field experiment results.

I. INTRODUCTION

As cities become bigger and more crowded, a new paradigm
for urban transportation is required. Mobility-on-demand
(MoD) systems operating on shared resources are becoming a
viable alternative [6]. While successful in increasing resource
utilization, these systems usually require a mean to re-balance
the fleet, which remains an open problem for large vehicles
such as cars.

Vehicle autonomy is considered as an efficient solution to
automatically re-balance vehicles among stations, and enable
a one-way vehicle sharing option in MoD systems. The ability
of vehicles to drive autonomously in urban environments has
been demonstrated, for example, in the 2007 DARPA Urban
Challenge (DUC). However, the vehicles that competed in
the DUC depend on a variety of sensors, some of which are
prohibitively expensive while others are highly specialized,
causing the deployment to be economically infeasible.

In this work, we aim at developing an autonomous vehicle
that uses minimal sensing and off-the-shelf components to
attain the same level of operational ability while making the
system economically feasible. We rely on the assumption that
the vehicle is always operating in the same environment,
which is a-priori known. This allows the vehicle to learn
important features of the environment and take advantage of
the infrastructure. Infrastructure cameras at an intersection
or pedestrian crossing can also help the autonomous vehicle
detect oncoming vehicles or pedestrians, allowing the au-
tonomous vehicle to make the decision (whether to go or stop)
more efficiently.

The main contribution of this paper is the evaluation of
exploiting infrastructure sensors in autonomous driving. In

particular, we show, using both simulations and field testing,
that under some conditions, employing infrastructure sensors
can significantly improve the performance of the system
whereas under some other conditions, the improvement is not
clear. We characterize both sets of conditions.

The remainder of the paper is organized as follows. Sec-
tion II describes the important components of our autonomous
vehicle. Section III discusses the use of existing infrastructure
sensors to improve safety and efficiency of the autonomous
vehicles. Results from both a simulation and a physical ex-
periment are provided in Section IV and Section V. Finally,
Section VI concludes the paper and discusses future work.

II. SYSTEM DESCRIPTION

Currently we have a single vehicle providing MoD service
between four stations, covering a total distance of about 500m.
It is based on an electric golf car, shown on Figure 1, equipped
with a minimalistic sensor configuration. We use three 2-D
LIDARs, a simple webcam to achieve required perception,
two wheel encoders and a dual axis gyroscope to measure
the vehicle’s speed and orientation.

The vehicle localizes itself using the adaptive Monte Carlo
localization (AMCL) approach [8], which uses a particle filter
to track the pose of a robot against a known map. While this is
traditionally done by matching features from the surrounding
buildings, we augmented our map with curb information on
those sections of the road with no or too few surrounding
buildings. The tilted LIDAR is used to detect the curbs. This
yields a precise localization (accuracy in the order of the
centimeter). The interested reader is encouraged to consult [7]
for more information.

Since the vehicle navigates on a known road network, the
navigation problem can be simplified by following predefined
routes. Navigation is thus reduced to path following, which
is implemented by a pure pursuit controller [5], and speed
control. This was described in details in [3].

III. EXPLOITING INFRASTRUCTURE SENSORS

The design philosophy of the DUC vehicles was to provide
sufficient sensing capability to the vehicles such that they are
able to navigate in a completely unknown environment with
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Fig. 1. Our vehicle testbed is built upon an electric golf car, augmented with a drive-by-wire system, and a small amount of sensors and computers.

some degree of reliability. This leads to vehicles being almost
completely covered with sensors (see for an example the MIT’s
entry in DUC shown on Figure 2) and economically infeasible
vehicle costs.

The domain of our work is where the autonomous vehicle
operates in a known environment. In this context, the vehicle
should use as much a-priori information as possible. For
instance, it is standard practice for a robot to use a detailed
map of the environment to localize itself and navigate. In
this work we propose that the vehicle could also utilize some
infrastructure sensors, such as traffic cameras.

In many cases, information from infrastructure sensing is
not only beneficial, but also becomes a necessity. Take the
example of Figure 3(a) where the view of the vehicle is almost
completely occluded by the bus. The knowledge of the vehicles
and pedestrians in the occluded region is absolutely important
for safe navigation. Being too conservative may cause the
traffic flow to freeze up causing unacceptable travel time.
In such situations, an infrastructure sensor provides a more
complete view of the environment for the vehicle to make
decisions, which would be very difficult to achieve from on-
board sensors alone.

Another example is show in Figure 3(b), where the pedes-
trian crossing is almost entirely occluded by the pillars and
barriers. At this particular location, as in many other urban
locations, a security camera is monitoring the area (in red on
the picture), and so it could also be used as an extra sensor for
our autonomous vehicle. The most difficult part would only
be to obtain the proper authorization to access the information
from the camera.

We argue that the main advantages of an infrastructure
sensor are that it is shared among all vehicles and that it
can be fine tuned to deal with a particular location (e.g.
provide an optimal viewpoint). As a consequence, utilizing

infrastructure sensors would reduce the sensing burden on
the individual vehicles, since on-board sensors can thus be
limited to the strict minimum required for basic perception.
Moreover, it would increase the safety and reliability of the
system at difficult and dangerous locations, such as pedestrian
crossings and intersections. Infrastructure sensors are also
easily available in many growing urban communities; such
as in Singapore where electronic road pricing is implemented.

Fig. 2. The MIT’s vehicle at the Darpa Urban Challenge.

IV. PEDESTRIAN CROSSING EXPERIMENT

To show the effect of the additional information from the
infrastructure, we performed an experiment in which our
autonomous vehicle was heading toward a pedestrian crossing.
Due to the limitation of on-board sensors and occlusions
caused by environmental features and other vehicles on the



(a) Example of occlusion by other vehicles: the bus is blocking the view of the
right side of the intersection.

(b) Example of occlusion by infrastructure features: from the vehicle point of
view, it is very difficult to detect pedestrians coming out of the building.

Fig. 3. In such situations, an infrastructure camera would provide the
autonomous vehicle with useful information on the state of the intersection or
pedestrian crossing, which would allow the vehicle to make a safer decision,
without being too conservative and stalling the traffic.

road, the pedestrians could not be reliably detected from the
vehicle while approaching the crossing (see Figure 3(b)). Thus,
the vehicle had to slow down at the pedestrian crossing each
time, irrespective of whether there were pedestrians or not.

An infrastructure sensor, in the form of a security camera,
was installed above that pedestrian crossing (in red on Fig-
ure 3(b)). Pedestrian were detected using the default HOG-
based people detection algorithm implemented by OpenCV
[1], [4]. This infrastructure sensor then sent a binary infor-
mation to the golf car whether there were pedestrians about
to cross the road or if the region was pedestrian free. Any
pedestrian detection would trigger the autonomous vehicle to
slow down in anticipation for the pedestrian to cross the road.

The details of that experiment were published in [2]. We ob-
served that when some pedestrians were detected, the vehicle
would slow down. Besides, when no pedestrian was detected
the vehicle would go through the crossing without slowing
down. Thus it appeared that using an infrastructure sensor

improved the traffic flow.

V. PEDESTRIAN CROSSING SIMULATION

In the previous section, we saw that utilizing an infras-
tructure sensor allowed for a higher motion efficiency: when
it had access to the infrastructure sensor, the vehicle only
stopped when a pedestrian was detected, whereas it had to stop
each time when it had to rely solely on its on-board sensors.
Although the difference on the total traveling time was only
of a few seconds, it would cause unnecessary inconvenience
and discomfort to the passenger.

In this section we will explore what would have happened if
we considered a flow of vehicles rather than a single unit. To
explore this question, we designed an experiment similar to the
experiment described previously but with a flow of vehicles
heading towards the pedestrian crossing. Since we only have
one vehicle, and in order to explore the impact of some
parameters, we conducted this investigation in simulation.

A. Description of the Simulation
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Arrival rate: 

Vehicles
Arrival rate: 

Camera

Fig. 4. Schematic of the pedestrian crossing simulation.

The simulation setup is made of a straight road heading
towards a pedestrian crossing, as illustrated on Figure 4.

Mobiles (pedestrians and vehicles) are modeled as points
moving in one dimension following the second order kinematic
equation 1, where a can be either 0, amax or −amax.{

ẍ = a

0 < ẋ < vmax

(1)

Pedestrians appear a few meters before the crossing, with
a rate of arrival that follows a Poisson distribution with
parameter λp. Pedestrians travel at a constant velocity of 1
m.s−1 (a = 0, v0 = vmax = 1).

Vehicles appear 100m before the pedestrian crossing with
a rate of arrival that follows a Poisson distribution with
parameter λv . Vehicles modulate their velocity so as to avoid
collision with the vehicle in front and the pedestrians, while
trying to travel as fast as possible. Their acceleration profile



TABLE I
SIMULATION RESULTS

Vmax λp
λv

0.01 0.10 0.20 0.30 0.40 0.60 0.80

6

0.00 19 17 19 17 20 17 20 17 22 17 - 17 - 17
0.01 19 17 19 17 20 17 20 17 21 17 - 17 - 18
0.04 19 18 20 18 20 18 22 18 27 18 - 18 - 18
0.07 20 18 20 18 21 19 23 18 37 19 - 20 - 21
0.10 20 18 21 19 22 19 26 20 - 21 - 21 - -
0.20 21 20 24 21 31 23 63 22 - 27 - - - -
0.40 26 25 42 32 - - - - - - - - - -

10

0.00 13 10 13 10 14 10 14 10 15 10 - 10 - 10
0.01 13 10 13 10 14 10 14 10 16 10 - 10 - 10
0.04 14 11 14 11 15 11 16 11 29 11 - 12 - 12
0.07 14 11 14 11 16 11 18 11 25 12 - 13 - 14
0.10 14 12 14 11 20 12 - 13 - 13 - 16 - 19
0.20 15 13 18 14 - 14 - 15 - 19 - - - -
0.40 19 17 - 23 - - - - - - - - - -

14

0.00 11 7 11 7 12 7 12 7 12 7 - 7 - 7
0.01 11 7 11 7 12 7 12 7 15 7 - 7 - 7
0.04 11 8 12 8 13 8 14 8 - 8 - 8 - 8
0.07 12 8 12 9 13 9 - 9 - 9 - 10 - 12
0.10 12 9 12 9 14 9 - 9 - 10 - 10 - 12
0.20 14 10 - 11 - 10 - 13 - 15 - - - -
0.40 18 15 - 12 - - - - - - - - - -

is set to amax = 3m.s−2, and their maximum velocity vmax

is a parameter of the simulation.
As with the experiment described above, we assume that

because of occlusion from some environmental features (e.g.
walls, pillars, etc.), the vehicles on the road cannot see the
pedestrians coming to the pedestrian crossing. However an
infrastructure sensor is available and can communicate to the
vehicles the position of the pedestrians. We simulated two
types of vehicles.

The first type of vehicles do not have access to the in-
frastructure sensor. Irrespective of whether a pedestrian is
approaching or not, those vehicles have to slow down before
the pedestrian crossing until they come to a stop, and resume
their motion only if no pedestrian is crossing. These vehicles
will hereafter be referred to as base vehicles.

The other type of vehicles communicate with the infras-
tructure sensor. Based on this information, the vehicles infer
how long it will take for an approaching pedestrian to reach
the beginning of the pedestrian crossing and stop only if they
have to. These vehicles will hereafter be referred to as infra
vehicles.

Optionally, the simulation can be run in real time, allow-
ing simultaneous graphical visualization. Figure 5 shows a
snapshot of the simulation for λp = 0.01, λv = 0.6 and
vmax = 6m.s−1, showing that the base vehicles (in green)
form a traffic jam, whereas the infra vehicle (in blue) move
smoothly through the pedestrian crossing.

B. Results

We measured the vehicles’ transit time, defined by the time
taken to cross the pedestrian crossing, starting 100m before.
Table I shows, for various combinations of λp, λv and vmax,
the average transit time of base vehicles (first column) and
infra vehicles (second column). In cases where the vehicles
form a traffic jam, the average transit time is meaningless

Fig. 5. Snapshot of the simulation. The thick gray line at the bottom right
corner represents the pedestrian crossing. The red ball represents a pedestrian,
which has just crossed the road. Vehicles are coming from the top left corner
of the image. The green balls represent the vehicles that do not have access
to the infrastructure sensor (base vehicles), the blue balls those that do (infra
vehicles).

since individual transit times keep increasing as the simulation
progresses (unstable condition). These cases are marked by a
dash in place of the average transit time.

From Table I it can be observed that transit times increase
with λp and λv , until a point where the traffic jam condition
occurs. Besides, we can see that transit times are always higher
for base vehicles than for infra vehicles, and that the traffic
jam condition occurs at lower values of λp and λv for the base
vehicles than for the infra vehicles. It can also be observed that



the traffic jam condition occurs at lower values of λp and λv

for higher values of vmax.
These observations confirm our idea that having access

to the infrastructure sensor improves the traffic flow, with a
substantial gain for heavy traffic conditions (high values of
λv) with few pedestrians (low values of λp).

VI. CONCLUSION

In this paper we argued that for autonomous vehicles operat-
ing in a known environment, the complexity of the system can
be brought down by relying on a-priori information and infras-
tructure sensors. Firstly, disposing of an accurate map and a
network of predefined routes simplifies the localization and
navigation tasks. Secondly, integrating information coming
from infrastructure sensors allows to negotiate more efficiently
some of the most difficult situations, such as intersections and
pedestrian crossings.

This results in safer and cheaper vehicles, hence easier to
deploy in a Mobility-on-Demand scenario. Moreover, as the
number of vehicles increases, the additional cost incurred by
the modification of the infrastructure would represent a smaller
fraction of the total cost.

Currently we are working toward more sophisticated ways
to integrate the information coming from different sources,
both on-board and from the infrastructure, taking into account
various sources of uncertainties such as transmission errors,
or damaged sensors.
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