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Abstract. We present an approach that allows mission and contingency manage-
ment to be achieved in a distributed and dynamic manner without any central control
over multiple software modules. This approach comprises two key elements: a mis-
sion management subsystem and a planning subsystem based on a Canonical Soft-
ware Architecture (CSA). The mission management subsystem works in conjunction
with the planning subsystem to dynamically replan in reaction to contingencies. The
CSA provides for consistency of the states of all the software modules in the plan-
ning subsystem. System faults are identified and replanning strategies are performed
distributedly in the planning and the mission management subsystems through the
CSA. The approach has been implemented and tested on Alice, an autonomous vehi-
cle developed by the California Institute of Technology for the 2007 DARPA Urban
Challenge.

1 Introduction

One of the major challenges in urban autonomous driving is the ability of the system to
reason about complex, uncertain, spatio-temporal environments and to make decisions that
enable autonomous missions to be accomplished safely and efficiently, with reactive re-
planning in case of contingencies. Due to the complexity of the system and a wide range of
environments in which the system must be able to operate, an unpredictable performance
degradation of the system can quickly cause critical system failure. In a distributed system
such as Alice, an autonomous vehicle developed by the California Institute of Technology
for the 2007 DARPA Urban Challenge, performance degradation of the system may result
from changes in the environment, hardware failures, inconsistencies in the states of dif-
ferent software modules, and faulty behaviors of a software module. To ensure safety and
mission success, there is a need for the system to be able to properly detect and respond to
these unexpected events which affect the vehicle’s operational capabilities.

Mission and contingency management is often achieved using a centralized approach
where a central module communicates with nearly every software module in the system
and directs each module sequentially through its various modes in order to recover from
failures. Examples of such a central module are the behavior management module of the
TerraMax Autonomous Vehicle [1] and the supervisory controller (SuperCon) module of
Alice previously developed for the 2005 DARPA Grand Challenge [2]. A drawback of this
approach is that the central module usually has so much functionality and responsibility
that it easily becomes unmanageable and error prone as the system gets more complicated.
In fact, Team Caltech’s failure in the 2005 DARPA Grand Challenge was mainly due to an



inability of the SuperCon module to reason and respond properly to certain combinations
of faults in the system [2]. This resulted from the difficulty in verifying this module due to
its complexity.

The complexity and dynamic nature of the urban driving problem make centralized
mission and contingency management impractical. A mission management subsystem and
a planning subsystem based on a Canonical Software Architecture (CSA) [3] have there-
fore been developed to allow mission and contingency management to be achieved in a
distributed manner. The mission management subsystem comprising the mission planner,
the health monitor and the process control modules works in conjunction with the planning
subsystem (the trajectory planner, the follower and the drive control) to dynamically re-
plan in reaction to contingencies. As shown in Figure 1, the health monitor module actively
monitors and estimates the health of the hardware and software components to dynamically
assess the vehicle’s operational capabilities throughout the course of mission. It commu-
nicates directly with the mission planner module which replans the mission goals based
on the current vehicle’s capabilities. The process control module uses the health estimates
of individual software modules to automatically restart a software module that quits unex-
pectedly and a software module that identifies itself as unhealthy. An unhealthy hardware
component is power-cycled by the software that communicates with it. The CSA provides
for consistency of the states of all the software modules in the planning subsystem. System
faults are identified and replanning strategies are performed distributedly in the planning
and the mission management subsystems through the CSA directive/response mechanism.
Together these mechanisms make the system capable of exhibiting a fail-operational/fail-
safe and intelligent responses to a number different types of failures in the system.

Related work includes a holistic contingency management technology [4], a Mission
Effectiveness and Safety Assessment (MENSA) technology [5], real-time fault detection
and situational awareness [6], the high level controller of the Intelligent Off-Road Navi-
gator [7] and a model-based approach [8]. These approaches rely on having a subsystem,
similar to our mission management subsystem, capable of monitoring and assessing unex-
pected, mission-related events that affect the overall system operation and mission success.
This subsystem may also be capable of suggesting a new strategy or operation mode for the
planning subsystem or reconfiguring the system in response to these events. The CSA, how-
ever, is intended to facilitate these responsibilities of the mission management subsystem.
By exploiting the hierarchical structure and integrating the directive/response mechanism
into the planning subsystem, the mission management subsystem can assess most of the
mission-related events by only reasoning at the level of failure or completion of its direc-
tives and the health of the hardware and software components.

The contributions of this paper are: (1) a framework for integrating mission and con-
tingency management into a planning system so that it can be achieved distributedly and
dynamically; (2) a complete implementation on an autonomous vehicle system capable of
operating in a complex and dynamic environment; and (3) an evaluation of the approach
from extensive testing and some insight into future research directions. The remainder of
this paper is organized as follows. Section 2 introduces the concept of the Canonical Soft-
ware Architecture. Section 3 describes the mission management subsystem in more detail.
Section 4 explains how system faults can be identified and handled distributedly through
the CSA. Section 5 presents the results from the 2007 DARPA Urban Challenge’s National
Qualifying Event and provides a discussion about the advantages and disadvantages of the
approach. Section 6 concludes the paper and discusses some future work.



2 Canonical Software Architecture

In many complex systems, the software modules that make up the planning system are
responsible for reasoning at different levels of abstraction. Hence, the planning system can
be decomposed into a hierarchical framework. A Canonical Software Architecture has been
developed to support this decomposition and separation of functionality, while maintaining
communication and contingency management. This architecture builds on the state analysis
framework developed at the Jet Propulsion Laboratory (JPL) and takes the approach of
clearly delineating state estimation and control determination as described in [9], [10], [11]
and [12]. To prevent the inconsistency in the states of different software modules due to
the inconsistency in the state knowledge, we require that there is only one source of state
knowledge although it may be provided in different abstractions for different modules.

There are two types of modules in CSA: estimation modules and control modules. For
modularity, each software module in the planning subsystem may be broken down into
multiple CSA modules. An example of the planning subsystem in CSA we have imple-
mented on Alice is shown in Figure 1. An estimation module estimates the system state
and provides an abstraction of the system state for the corresponding control module(s).
A control module gets inputs, performs actions based on the inputs, and delivers outputs.
As shown in Figure 2, the inputs consist of state information, directives/instructions (from
other modules wishing to control this module) and responses/status reports (from other
modules receiving instructions from this module). The outputs are the same type as the in-
puts, but in the reverse direction (status reports from this module and directives/instructions
for other control modules).

For each directive that a control module is designed to accept, the following must be
specified: (1) entry condition; (2) exit condition; (3) constraints that must be satisfied during
the execution of the directive; and (4) performance criteria (performance or other items to
be optimized). The entry and exit conditions define, respectively, what must be true before
starting to execute this directive and what must be true to complete the execution of this
directive. For each directive received, a response which indicates rejection, acceptance,
failure or completion of the directive and the reason for rejection or failure must be reported
to the source of the directive. Rejection or failure of a directive occurs when the entry or
exit condition is not readily achievable, the deadlines aren’t met, or one of the constraints
cannot be satisfied.

A CSA module consists of three components: Arbitration, Control and Tactics. It com-
municates with its neighbors through directives and responses, as shown in Figure 2. Arbi-
tration is responsible for (1) managing the overall behavior of the control module by issuing
a merged directive, computed from all the received directives, to the Control; and (2) re-
porting failure, rejection, acceptance and completion of a received directive to the Control
of the issuing control module. We have implemented a simple arbitration scheme, similar to
that of the subsumption architecture [13], where the merged directive is simply the received
directive with the highest priority. As a future work, one can implement a more complicated
arbitration scheme that involves dealing with multiple received directives simultaneously.
Control is responsible for (1) computing the output directives to the controlled module(s)
or the commands to the hardware based on the merged directive, received responses and
state information; and (2) reporting failure and completion of a merged directive to the Ar-
bitration. Tactics provides the core functionality of the control module and is responsible
for providing the logic used by the Control for computing output directives.
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Boxes with double lined borders are subsystems that will be broken up into multiple CSA modules.
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3 Mission Management Subsystem

3.1 Health Monitor and Vehicle Capabilities

The health monitor module is an estimation module that continuously gathers the health
of the software and hardware (GPS, sensors and actuators) components of the vehicle and
abstracts the information about these devices into a form usable for the mission planner.
This form can most easily be thought of as vehicle capability. For example, we may start the
mission with perfect functionality, but somewhere along the line lose a right front sensor.
The intelligent choice in this situation would be to try to limit the number of left turns at
intersection due to the inability to assess oncoming traffic from the right and slow down the
vehicle. Another example arises if the vehicle becomes unable to shift into reverse. In this
case we would not like to purposely plan paths that require a three-point turn.

From the health of the sensors and sensing modules, the health monitor estimates the
sensing coverage. The information about sensing coverage and the health of the GPS unit
and actuators allow the health monitor to determine the following vehicle capabilities: (1)
turning right at intersection; (2) turning left at intersection; (3) going straight at intersection;
(4) nominal driving forward; (5) stopping the vehicle; (6) making a three-point turn; (7)
driving in an unstructured region; and (8) navigation in unmapped areas.



3.2 Mission Planner

The mission planner module receives a Mission Data File (MDF) that is loaded before each
mission, vehicle capabilities from the health monitor module, position of obstacles from the
mapper module and status reports from the trajectory planner module and sends segment-
level goals to the trajectory planner module. A segment-level goal specifies the road/zone
Alice has to navigate and the constraints, represented by the type of segment (road, zone,
off-road, intersection, U-turn, pause, backup, end of mission) which basically defines a set
of traffic rules to be imposed during the execution of this goal.

The mission planner is broken up into one estimation and two CSA control modules:
the traversibility graph estimator, the mission control and the route planner. The mission
control module has three main functions: (1) computing mission goals which specify how
Alice will satisfy the mission specified in the MDF; (2) based on the vehicle capabilities,
determining conditions (including the maximum speed) under which we can safely con-
tinue the mission; and (3) detecting the lack of forward progress and replanning the mis-
sion goals accordingly. The route planner module determines segment-level goals to satisfy
the mission goals based on the traversibility graph which represents the connectivity of the
route network and is determined by the traversibility graph estimator module. Since vehicle
capabilities are also taken into account in the determination of the mission goals and the
traversibility graph, for example, if the capability for making a left turn decreases due to
the failure of the right front sensor, the route involving the least number of these maneu-
vers will be preferred or if the vehicle is not able to shift into reverse, routes that require a
three-point turn will be avoided.

4 Fault Handling in the Planning Subsystem

In the CSA framework, fault handling is embedded into all the modules and their commu-
nication interfaces in the planning subsystem hierarchy. Each module has a set of different
control strategies which allow it to identify and resolve faults in its domain and certain
types of failures propagated from below. If all the possible strategies fail, the failure will
be propagated up the hierarchy along with the associated reason. The next module in the
hierarchy will then attempt to resolve the failure. This approach allows each module to be
isolated so it can be tested and verified much more fully for robustness.

Trajectory Planner. The trajectory planner accepts directives from the mission planner
module and generates trajectories for Alice to follow. It comprises four components: the
logic planner, the path planner, the velocity planner and the predictor. The logic planner
guides the vehicle at a high level by determining the current situation and coming up with
an appropriate planning problem (or strategy) to solve. The path planner is responsible
for finding a feasible path, subject to the constraints imposed by the planning problem. If
such a path cannot be found, an error will be generated. Since Alice needs to operate in
both structured and unstructured regions, we have developed three types of path planner
to exploit the structure of the environment: the rail planner (for structured regions such as
roads, intersections, etc), the off-road rail planner (for obstacle fields and sparse waypoint
regions) and the clothoid planner (for parking lots and obstacle fields). All the maneuvers
available to the rail planner are pre-computed; thus, the rail planner may be too constrain-
ing. To avoid a situation where Alice gets stuck in a structured region (e.g. when there is
an obstacle between the predefined maneuvers), the off-road rail planner or the clothoid



planner may also be used in a structured region. This decision is made by the logic planner.
The velocity planner takes the path from the path planner and the planning problem from
the logic planner and generates a time parameterized path, or trajectory. The predictor is
responsible for predicting the future location and behavior of other vehicles.

The logic planner is responsible for fault handling inside the trajectory planner. Based
on the error from the path planner and the follower, the logic planner specifies a different
planning problem such as allowing passing or reversing, using the off-road rail planner,
or reducing the allowable distance from obstacles. The logic for dealing with these failures
can be described by a two-level finite state machine (FSM). First, the high-level mode (road
region, zone region, off-road, intersection, U-turn, failed and paused) is determined based
on the directive from the mission planner and the current position. Each of the high-level
modes can be further decomposed to completely specify the planning problem described
by the drive state, the allowable maneuvers, and the allowable distance from obstacles.

– Road region, zone region and off-road. The logic planner transitions to the road
region, zone region or off-road mode when the type of segment specified by the mission
planner is road, zone or off-road, respectively. The modes and transitions for the road
region mode are shown in Figure 3. In the zone region and the off-road modes, passing
and reversing are allowed by default. For the zone region mode, the clothoid planner
is the default path planner and the trajectory is planned such that Alice will stop at the
right distance from the closest obstacle, so the only decision that needs to be made by
the logic planner is the allowable distance from obstacles For the off-road mode, the
drive state (drive or stop) also needs to be determined. As a result, only three and six
modes are necessary within the zone region mode and the off-road mode, respectively.
The transitions can be easily deduced from those shown in Figure 3.

– Intersection. The logic planner transitions to the intersection mode when Alice ap-
proaches an intersection. Passing and reversing maneuvers are not allowed and the tra-
jectory is planned such that Alice stops at the stop line. Once Alice is within a certain
distance from the stop line and is stopped, the intersection handler, an FSM compris-
ing five modes (reset, wait for precedence, wait for merging, wait for the intersection
to clear, jammed intersection, and go), will be reset and start checking for precedence
[14]. The logic planner transitions out of the intersection mode when the intersec-
tion handler transitions to the go or jammed intersection mode. If the intersection is
jammed, the logic planner will transition to the mode where passing is allowed.

– U-turn. The logic planner transitions to the U-turn mode when the type of segment
specified by the mission planner is U-turn. Once the U-turn is completed, the logic
planner will transition to the paused mode and wait for the next directive.

– Failed. The logic planner transitions to the failed mode when all the strategies in the
current high-level mode have been tried. In this mode, failure is reported to the mission
planner. The logic planner then transitions to the paused mode. The mission planner
will then replan and send a new directive such as making a U-turn, switching to the off-
road mode, or backing up in order to allow the route planner to change the route. As
a result, the logic planner will transition to a different high-level mode. These mecha-
nisms ensure that Alice will keep moving as long as it is safe to do so.

– Paused. The logic planner transitions to the paused mode when it does not have any
segment-level goals or when the type of segment specified by the mission planner is
pause or end of mission. In this mode, the logic planner is reset and the trajectory is
planned such that Alice comes to a complete stop as soon as possible.
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Follower. The follower module computes actuation commands that keep Alice on the ref-
erence trajectory [15]. Although these trajectories are guaranteed to be collision-free, since
Alice cannot track them perfectly, she may get too close or even collide with an obstacle
if the tracking error is too large. To address this issue, we allow the follower to request a
replan from the trajectory planner through the CSA directive/response mechanism when
the deviation from the reference trajectory is too large. In addition, we have implemented
a reactive obstacle avoidance (ROA) component to deal with unexpected obstacles. The
ROA component can override the acceleration command if the projected position of Alice
collides with an obstacle. The projection distance depends on the velocity of Alice. The
follower will report failure to the trajectory planner if the ROA is triggered, in which case
the trajectory planner can replan the trajectory.

Drive Control. The drive control module is the overall driving software for Alice. It re-
ceives actuation commands from the follower, determines if they can be executed and, if
so, sends the appropriate commands to the actuators. The drive control module also per-
forms checking on the health and operational state of the actuators, resets the actuators that
fail, and broadcasts the actuator state. Also included in the role of the drive control module
is the implementation of physical protections for the hardware to prevent the vehicle from
hurting itself. This includes three functions: limiting the steering rate at low speeds, pre-
venting shifting from occurring while the vehicle is moving, and transitioning to the paused
mode in which the brakes are depressed and commands to any actuator are rejected when
any of the critical actuators such as steering and brake fail.



5 Results and Discussion
The 2007 DARPA Urban Challenge’s National Qualifying Event was split into three test
areas, featuring different challenges. In this section, we present the results from Test Area
B which was the most challenging test area from the mission and contingency management
standpoint. Test Area B consisted of approximately 2 miles of driving, including a narrow
start chute, a traffic circle, narrow, winding roads, a road with cars on each side that have to
be avoided and an unstructured region with an opening in a fence, navigating and parking
at a designated spot in an almost fully occupied parking lot.

In our first attempt, a reasonably conservative vehicle separation distance was used.
As shown in Figure 4(a), the logic planner spent a considerable amount of time in the
aggressive and bare modes where the allowable distance from obstacles is reduced. Given
the size of Alice, the second largest vehicle in the competition, she had difficulties finishing
this course mainly due to the vehicle separation distance problem which caused her to
spend about five minutes trying to get out of the start chute area and more than ten minutes
trying to park correctly while keeping the required distance from obstacles. Specifically,
the problem was that in the start chute area, there were K-rails less than one meter away
from each side of Alice, resulting in a violation of the obstacle clearance requirement for
the safe or nominal mode, which was set in accordance with the DARPA rules. Alice had
to progress through a series of internal planning failures before finally driving with reduced
buffers on each side of the vehicle. In the parking lot, there was a car parked right in front
of our designated spot and if Alice was to park correctly, she would have to be within two
meters of that car; thus, violating the obstacle clearance requirement. Alice ran out of the
thirty minute time limit shortly after we manually moved her out of the parking lot.

After the first run, we decided to decrease the required vehicle separation distance and
relax the tolerance of reaching waypoints so Alice could complete the course faster. Alice
was then able to successfully complete the course within twenty three minutes with only
minor errors. The logic planner mode during the second attempt is shown in Figure 4(b).

Despite the failure in completing the first run within the time limit, Alice demonstrated
the desired behavior, consistent with what we have seen in over two hundred miles of
extensive testing, that she would keep trying different strategies to get closer to completing
the mission and she would never stop as long as the system is capable of operating safely.
Had she been given more time, the mission control would have detected the lack of forward
progress and decided to skip the parking and continue to complete the rest of the mission.

Compared to a centralized approach, our approach to mission and contingency man-
agement is a lot more modular. It allows independent development and testing of failure
handling in different software modules, which is important for a project with a short devel-
opment period and a large development team. Most of the bugs can be found at the stage
of module test, instead of system integration test. Using different levels of abstraction, our
approach greatly simplifies the logic for dealing with failures and makes it easier to identify
all the combinations of failures in the system. A drawback of this approach is that all the
interfaces need to be clearly defined; thus, it requires putting a substantial amount of effort
in the design phase of the project.

6 Conclusion and Future Work
We described Team Caltech’s approach to mission and contingency management for the
2007 DARPA Urban Challenge. This approach allows mission and contingency manage-
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Fig. 4. The logic planner mode during NQE Test Area B (a) run #1 and (b) run #2.

ment to be accomplished in a distributed and dynamic manner. It comprises two key ele-
ments: a mission management subsystem and a planning subsystem based on a Canonical
Software Architecture (CSA). The mission management subsystem works in conjunction
with the planning subsystem to dynamically replan in reaction to contingencies. The CSA
provides for consistency of the states of all the software modules in the planning subsys-
tem. System faults are identified and replanning strategies are performed distributedly in
the planning subsystem through the CSA. These mechanisms make the system capable of
exhibiting a fail-operational/fail-safe and intelligent responses to a number different types
of failures in the system. Extensive testing has demonstrated the desired behavior of the
system which is that it will keep trying different strategies in order to get closer to complet-
ing the mission and never stop as long as it is capable of operating safely.

Extensions of this work include extending the CSA to the estimation side of the system.
Incorporating the notion of uncertainty in the CSA directive/response mechanism is also
important. Consider a scenario where spurious obstacles are seen such that they completely
block the road. Although the map may correctly reflect high uncertainty, the logic planner
will still progress through all its modes before finally concluding that it cannot complete
the segment-level goal. Failure will then be reported to the mission planner which will in-
correctly evaluate the current situation as the road is completely blocked and subsequently
plan a U-turn. If the response also incorporates the notion of uncertainty, the mission plan-
ner can use this information together with the system health and issue a pause directive
instead so Alice will stop and wait for better accuracy of the map.

Another direction of research is to formally verify that if implemented correctly, the
directive/response mechanism will ensure the consistency of the states of all the software
modules in the system and that the CSA and the mission management subsystem guarantee
that Alice will keep going as long as it is safe to do so. Using temporal logic, we were able
to formally verify the state consistency for the follower and drive control modules. For the
rest of the system, we have only verified the state consistency and the fail-operational/fail-
safe capability through extensive testing.

Lastly, it is also of interest to verify that this distributed mission and contingency man-
agement approach actually captures all the functionality of a centralized approach such as
SuperCon and that it actually facilitates formal verification of the system. We believe that
this is the case for many systems in which the central module does not take into account
the uncertainties in the system and the environment.
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