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Abstract— This paper bridges the advances in computer
science and control to allow automatic synthesis of complex
dynamical systems which are guaranteed, by construction, to
satisfy the desired properties even in the presence of adversary.
The desired properties are expressed in the langauge of tempo-
ral logic. With its expressive power, a wider class of properties
than safety and stability can be specified. The resulting system
contains a discrete planner which plans, in the discrete domain,
a set of transitions of the system to ensure the correct behaviors
and a continuous controller which continuously implements
the plan. For a system with lattice structure, we present an
approach, based on a receding horizon scheme, to overcome
computational difficulties in the synthesis of a discrete planner
and allow more complex problems to be solved.

I. INTRODUCTION

Recent advances in computer science, the development
of a polynomial-time algorithm to construct finite state
automata from their temporal logic specifications, allow
automatic synthesis of digital designs so that a large class
of properties including safety, guarantee and response are
ensured even in the presence of adversary [1]. On the other
hand, recent advances in control and abundance of computa-
tional resources allow continuous controllers to be designed
in an automated fashion so that safety and stability prop-
erties are ensured even in the presence of disturbances and
modeling errors [2], [3], [4]. In many applications, systems
need to perform complex tasks and interact with (potentially
adversarial) environments. Furthermore, these systems may
contain both continuous and discrete components. A grand
challenge in this paradigm is to integrate the methods from
the two communities such that automatic synthesis of such
systems is possible.

Hybrid system theory has been developed to deal with sys-
tems with both discrete and continuous components. Control
of hybrid systems has been studied by many researchers [5],
[6]. However, properties of interest are limited to stability
and safety. For the system to be able to perform complex
tasks, a wider class of properties such as guarantee (e.g.
eventually perform task 1 or task 2 or task 3) and response
(e.g. if the system fails, then eventually perform task 1 or
perform tasks 1, 2 and 3 infinitely often in any order) need to
be considered. A language of temporal logic has therefore
garnered great interest due to its expressive power. MILP
formulation has been used to incorporate temporal logic
in control [7]. The interaction with potentially adversarial
environments, however, is not taken into consideration.
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The development of language equivalence and bisimula-
tion notions allows abstraction of the continuous component
of the system to a purely discrete model while preserving
all the desired properties [8]. This subsequently provides a
hierarchical approach to system design. In the first layer,
a discrete planner plans, in the discrete domain, a set of
transitions of the system to ensure the satisfaction of the
desired properties. This abstract plan is then continuously
implemented by a continuous controller in the second layer.
Bisimulations provide the (sufficient and necessary) proof
that the continuous execution preserves the desired proper-
ties. This hierarchical approach has been applied in robot
motion planning problems for a special case of fully actuated
(ẋ � u) [9], [10] and kinematic (ẋ � A�x�u) [11] models. In
[10], [11], the discrete planner is constructed using digital
design synthesis tools [1]. The main limitation of such
tools is the state explosion problem which restricts their
applications to small problems.

The contribution of this paper is twofold. First, we extend
the work of [10], [11] to a more complicated system with
linear and piecewise affine (PWA) dynamics. The notion
of reachability is defined which is sufficient to ensure that
the continuous execution preserves the correctness of the
discrete plan. The requirement of bisimulation abstraction
is then relaxed by restricting the set of discrete plans to
those satisfying the reachability relation which can be estab-
lished by solving a multiparametric programming problem.
The Multi-Parametric Toolbox [4] provides an off-the-shelf
computational machinery which enables the multiparametric
programming problem to be solved in an automated fashion.
Together with the digital design synthesis synthesis tool [1],
this allows automatic design of dynamical systems which sat-
isfy a wide range of properties expressed in temporal logic,
taken into account the adversary nature of the environments.

Second, to address the state explosion problem in the dig-
ital design synthesis, we present a receding horizon scheme
for executing finite state automata while ensuring system
correctness. This allows the synthesis to be performed on
a smaller domain and thus potentially substantially reduce
the size of the space space of the synthesis problem. As a
result, more complex problems can be handled.

II. PRELIMINARIES

We use linear temporal logic (LTL) to describe the desired
properties of the system. Given an LTL formula, we want to
construct a finite state automaton, which can be thought of
as a graph with a finite number of nodes (representing the
states of the system) and edges (representing the transitions
between states), such that resulting the state transitions in
the automaton ensures the correctness of the system. In this



section, we briefly describe the definition of LTL and the
synthesis of a finite state automaton which satisfies a given
LTL formula.

A. Terminology and Notations

Definition 1: A system of a set of variables V . The
domain of V , denoted by dom�V �, is the set of valuations
of V. A state of the system is an element v � dom�V �. For
a state v � dom�V � and a set of states � � dom�V �, their
restrictions to a subset of variables Z � V are denoted by
v � Z and � � Z , respectively.

Definition 2: An atomic proposition is a statement on the
system variables υ which has a unique truth value (True or
False) for a given value of υ. Let v � dom�V � be a state of
the system and π is an atomic proposition. We write v � π
if π is True at the state v. Otherwise, we write v � π.

Definition 3: A transition system is a tuple �V,Π,�, �
, V0� where (a) V is a (possibly infinite) set of states, (b) Π
is a finite set of atomic propositions, (c) � � V � V is a
transition relation, (d) � V � Π is a satisfaction relation,
and (e) V0 � V is a set of initial states.

Definition 4: An equivalence relation � � V � V on the
domain V is proposition preserving if for all states v1, v2 � V
and all propositions π � Π, if v1 � q and v1 � π, then v2 � π.

Definition 5: For a transition system T � �V,Π,�, �, V0�,
a proposition-preserving equivalence relation �B on V is a
bisimulation of T if for all states v1, v2 � V , if v1 �B v2,
then for all states v�1 � V , if v1 � v�1, there exists a state
v�2 � V such that v2 � v�2 and v2 �B v�2.

Definition 6: An execution of the system is an infinite
sequence of the states of the system over a particular run,
i.e. an execution σ can be written as σ � s0s1s2 . . . where
�i � 0, si is a state of the system.

B. Linear Temporal Logic

The use of linear temporal logic (LTL) as a specification
language was introduced by Pnueli [12], [13]. LTL is built
up from a set of atomic propositions, the logic connectives
(�, � , � , ��), and the temporal modal operators (�, �,
�, � )1. An LTL formula is defined inductively as follows.

1) Any atomic proposition π is an LTL formula.
2) Given an LTL formula ϕ and ψ, the following are also

LTL formulas: �ϕ, ϕ � ψ, �ϕ and ϕ � ψ.

That is, in Backus Naur form:

ϕ ��� π � �ϕ � ϕ � ϕ � � ϕ � ϕ � ϕ

Other operators can be defined as follows: ϕ � ψ � ���ϕ �
�ψ�, ϕ�� ψ � �ϕ � ψ, �ϕ � True � ϕ, and �ϕ � ���ϕ.
A propositional formula is one that does not include temporal
operators. Given a set of LTL formulas ϕ1, . . . , ϕn, their
boolean combination is an LTL formula formed by joining
ϕ1, . . . , ϕn with logic connectives.
Semantics of LTL: An LTL formula is interpreted over an
infinite sequence of states. Given an execution σ � s0s1s2 . . .

1�, �, � and � are read as “next,” “always,” “eventually,” and “until,”
respectively. Some authors also use release ( � ) which can be defined as
ψ � ϕ � ���ψ � �ϕ� for any LTL formulas ψ and ϕ.

and an LTL formula ϕ, we say that ϕ holds at position i � 0
of σ, written si � σ, if and only if ϕ holds for the remainder
of the execution σ starting at position i. The semantics of
the temporal logic formula is defined as follows:

1) For an atomic proposition π, si � π iff si � p
2) si � �ϕ iff si � ϕ
3) si � ψ � ϕ iff si � ψ or si � ϕ
4) si � �ϕ iff si�1 � ϕ
5) si � ψ � ϕ iff 	j � i, sj � ϕ and �k � �i, j�, sk � ψ

Based on the above definition, �ϕ holds at position i iff ϕ
holds at every position in σ starting at position i, and �ϕ
holds at position i iff ϕ holds at some position j � i in σ.

Definition 7: Let Σ be the set of all executions of a
system. The system is said to be correct with respect to
its specification ϕ, written Σ � ϕ, if all its executions satisfy
ϕ, that is,

�Σ � ϕ� �� ��σ, �σ � Σ� �� �σ � ϕ��. (1)

C. Synthesis of a Finite State Automaton

In many applications, systems need to interact with the
environments and whether they satisfy the desired properties
depends on what the environments do. In this section, we
informally describe the work of Piterman, et al. on Synthesis
of Reactive(1) Designs [1]. We refer the reader to [1] and
references therein for the detailed discussion of automatic
synthesis of a finite state automaton from its specification.

Based on Definition 7, for a system to be correct, its
specification ϕ needs to be satisfied in all of its executions
regardless of what the environment does. Thus, the environ-
ment can be treated as adversary and the synthesis problem
can be viewed as a two-player game between the system and
the environment: the environment attempts to falsify ϕ while
the system attempts to satisfy ϕ. We say that ϕ is realizable
if the system can satisfy ϕ no matter what the environment
does.

For a specification of the form

�

i�I

� � ϕi� �� �

j�J

� � ψj�, (2)

known as Generalized Reactivity(1) formulas, [1] shows that
checking its realizability and synthesizing the corresponding
automaton can be performed in polynomial time. In partic-
ular, we are interested in a specification of the form

ϕ � �ϕe��ϕs� (3)

where roughly speaking, ϕe is an LTL formula which charac-
terizes the initial states of the system and the assumptions of
the environment and ϕs is an LTL formula which describes
the correct behavior of the system, including the valid
transitions the system can make. We refer the reader to [1] for
a precise definition of ϕe and ϕs. Note that since ϕe��ϕs

is satisfied whenever ϕe is False , if the assumptions of the
environment or initial state of the system violates ϕe, the
system is not guaranteed to satisfy its correct behavior ϕs,
even though the specification ϕ is satisfied.

If the specification is not realizable, the synthesis algo-
rithm provides an initial state of the system for which there



exists a set of moves of the environment such that the system
cannot satisfy ϕ. The knowledge of such initial state is useful
since it provides the information about under what kind of
conditions the system will fail to satisfy its desired property.
The knowledge of the realizability of the specification is also
useful in the development of complex systems. During the
design process, the high level specification (also called the set
of requirements by most system engineers) of the system is
usually broken down into a set of specifications for different
software modules. The designers of each software module
are then responsible for developing their module such that
its specification is satisfied. However, if the specification is
not realizable, such a module cannot be developed. Without
formally checking the realizability of the specification before
the development, the software designers may waste a lot of
time keeping implementing, testing and fixing their module
until they finally realize that the specification they are
given is impossible to be satisfied. Formally checking the
realizability early in the design process allows the designer to
adjust the specification of each module properly early in the
design process which potentially save a lot of development
time and cost.

If the specification is realizable, the synthesis algorithm
generates a finite state automaton which represents a set of
transitions the system should follow in order to satisfy ϕ.
Assuming that the environment and the initial state of the
system satisfy ϕe, at any instance of time, there exists a
node in the automaton which represents the current state of
the system, and the system can follow the transition from
this node to the next based on the current knowledge about
the environment. However, if ϕe is violated, the automaton
is no longer valid, meaning that there may not exist a node
in the automaton which represents the current state of the
system, or even though such a node exists and the system
follows the transitions in the automaton, the correct behavior
ϕs is not guaranteed.

III. PROBLEM FORMULATION

Consider a system S with a set of variables V � S � E
where S and E represent, respectively, the set of variables
controlled by the system and the set of variables controlled
by the environment. The domain of V is therefore given by
dom�V � � dom�S��dom�E� and a state of the system can
be written as v � �s, e� where s � dom�S� and e � dom�E�.
Throughout the paper, we call s the controlled state and e
the environment state. In general, a dynamical system has
a continuous domain and therefore dom�V � is not finite.
However, the synthesis algorithm described in Section II
requires a finite domain. Thus, we partition dom�S� and
dom�E� into a finite number of equivalence classes or cells
� and � , respectively, such that the partition is propositional
preserving. We denote the resulting discrete domain of the
system by � � � � � . Throughout the paper, we call
v � dom�V � a continuous state and ν � � a discrete state
of the system. For a discrete state ν � � , we say that ν
satisfy an atomic proposition π, denoted by ν �d π, if and
only if there exists a continuous state v contained in the

cell corresponding to the discrete state ν such that v � π.
(Due to the propositional preserving property of the partition,
this implies that for all continuous state v contained in the
cell corresponding to the discrete state ν, v � π.) Given an
infinite sequence of discrete state σd � ν0ν1ν2 . . . and an
LTL formula ϕ of variables from V , we say that ϕ holds at
position i � 0 of σd, written νi �d ϕ if and only if ϕ holds
for the remainder of σd. With these definitions, the semantics
of LTL for a sequence of discrete state can be derived from
the general semantics of LTL defined in Section II-B.

Assume that the value of s � S evolves according to the
following piecewise-affine (PWA) dynamics2:

s�t � 1� � Aks�t� � Bku�t� � Ck if �s�t�, u�t�� � Dk

u�t� � U
(4)

where k � �1, . . . , NPWA�, NPWA is the total number
of PWA dynamics defined over a polyhedral partition of
dom�S� � U , for any natural number t, s�t� � dom�S� is
the continuous controlled state at time t, u is the control
signal and U is the set of admissible control inputs. Given
a model of the system (4) and an LTL specification ϕ of
variables from V , assuming that ϕ does not contain the next
(�) operator, we are interested in designing a discrete planner
and a continuous controller for the system which ensure that
any execution σ � v0v1 . . . satisfies ϕ where for each natural
number t, vt � dom�V � is the continuous state of the system
at time t.

IV. STATE SPACE DISCRETIZATION

Based on the partition described in Section III, we follow
the scheme in [9] to obtain a corresponding finite transition
system D which serves as an abstract model of S. However, in
our case, the dynamics (4), in general, constrains the evolu-
tion of the continuous state of the system which subsequently
constrains a set of valid transitions of D. As a result, the
transition relation of D cannot be simply defined based on the
topological adjacencies of the cells as in [9]. Furthermore,
constructing a bisimulation partition for a general system
with PWA dynamics is hard. In this section, we relax the
requirement that the partition is bisimulation and define the
notion of reachability which is sufficient (but not necessary)
to guarantee that if a discrete controlled state �j is reachable
from �i, the transition from �i to �j can be continuously
implemented by a continuous controller. This means that
starting from any state s�0� � �i, the continuous controller
can drive the system to a state s�T � � �j satisfying the
constraint �t � �0, . . . , T �, s�t� � �i � �j .3 A computational
scheme which provides sufficient condition for reachability
between two discrete controlled state is also presented.

A. Reachability Relationship

Let � � ��1,�2, . . . ,�n� be a partition of dom�S� as
described in Section III, i.e., for each i, j � �1, . . . , n�, � i �

2We restrict ourselves to PWA dynamics for computational reasons. Our
framework applies to nonlinear dynamics but no computational scheme to
date is able to handle them efficiently.

3By the abuse of notation, we use �i and �j to represent both the discrete
states and the cells in the partition corresponding to those discrete states.



dom�S�, int��i� 
 int��j� � � and �n
i�1 �i � dom�S�.

We define the reachability relationship, denoted by �, as
follows: a discrete state �j is reachable from a discrete state
�i, written �i � �j only if starting from any point sinit � �i,
there exists a control law u � U which takes the system (4) to
a point sfinal � �j while always staying in �i��j . Note that
this is stronger than the usual definition of reachability [14].
We write �i � �j if �i is not reachable from �j . Clearly, if
�i 
 �j � � (i.e. �i and �j are not topologically adjacent),
then �i � �j .

In general, for two discrete states �i and �j , verifying
the reachability relationship �i � �j is hard. Therefore, we
resort to a heuristic based on the following optimal control
problem: Given cells �i,�j � dom�S�, the set of admissible
control inputs U , the matrices Ak and Bk as in (4), a horizon
length N � 0 and the cost matrices PN , Q � 0 and R � 0,
solve

min
u�0�,...,u�N�1�

�PNs�N ��2 � N�1

�
t�0

�Qs�t��2��Ru�t��2
s.t. s�N � � �j , s�0� � dom�S�

s�t � 1� � Aks�t� �Bku�t� if �s�t�, u�t�� � Dk

u�t� � U
s�t� � �i � �j

�t � �0, . . . , N � 1�.
(5)

Note that (5) is a finite horizon optimal control problem.
Furthermore, one can consider the problem in (5) as a family
of problems parametrized by s�0� and it can be regarded
as a multiparametric programming problem [3]. For certain
choices of �i, �j , and U (for example polytopic sets, i.e., sets
defined by affine inequalities), the Multi-Parametric Toolbox
[4] computes the explicit solution for this multiparametric
programming problem, i.e., computes a partition � i,j of
some subset of �i � �j such that for any s�0� contained in
�i,j the problem in (5) is feasible. An example of a set � i,j

along with �i and �j is shown in Figure 1.

Fig. 1. An example of a set �i,j represented by the unshaded region. For
any s�0� in the shaded region, the optimal control problem (5) is infeasible.
Different unshaded regions have different associated controllers. For more
detail, see [4].

B. State Space Discretization

In general, given the original partition � ���1,�2, . . . ,�n� of dom�S� and any i, j � �1, . . . , n�,
the reachability relation between �i and �j may not be
established through the solution of the multiparametric
programming problem (5) since � i is not necessarily
covered by �i,j (due to the constraints on u and a specific
choice of the finite horizon N ). This section describes a
state space discretization scheme based on the reachability
relationship defined earlier to increase the number of valid

discrete state transitions of D. The underlying idea is
that for each �i and �j , we determine �i,j such that for
any s�0� � �i,j , the problem in (5) is feasible. Then, we
partition �i into �i 
 �i,j and �i � �i,j and obtain the
following reachability relationship: ��i 
 �i,j� � �j and��i � �i,j� � �j .

Discretization Algorithm: Pick a natural number N and
the cost matrices PN , Q and R. Define a lower bound Volmin

on the volume of each cell in the new partition4. Starting with
a pair �i, j� where i, j � �1, . . . , n� and i � j, determine the
set �i,j such that for any s�0� � �i,j , the problem in (5) is
feasible. Partition �i into �i 
�i,j and �i ��i,j and replace
�i in � with �i 
 �i,j and �i � �i,j if the volumes of both
�i
�i,j and �i��i,j are greater than Volmin . Keep iterating
this process until none of the cells in � can be partitioned.

We let �� � ���

1,�
�

2, . . . ,�
�

m� be the resulting partition of
dom�S� after applying the proposed discretization algorithm.
Since � � is a subpartition of � and � � � �� is propositional
preserving, it is trivial to show that � � � �� � � is also
propositional preserving. As before, we can construct a cor-
responding finite transition system D

� based on the partition
� � of the continuous domain V .

Remark 1: The proposed discretization algorithm termi-
nates when no cell can be partitioned such that the volumes
of the two resulting new cells are both greater than Vol min .
Larger Volmin causes the algorithm to terminate sooner.

Remark 2: At which point the algorithm terminates af-
fects the reachability between cells of the new partition and
as a result, affects the realizability of the specification. Gen-
erally, a coarse partition makes the specification unrealizable
but a fine partition causes state space explosion. A way to
decide when to terminate the algorithm is to start with a
coarse partition and keep refining it until the specification is
realizable.

C. Specification Modification

To restrict discrete transitions to those satisfying the
reachability relation, we simply add extra LTL formulas of
the form ��ψ1���ψ2� to ϕs in the system specification (3).
Given the new partition � � � ���

1,�
�

2, . . . ,�
�

m� of dom�S�,
we determine the reachability between � �

i and � �

j for i, j ��1, . . . ,m�.
For each i � �1, . . . ,m�, let �reach

i be a subset of � � such
that for any � �

j � �reach
i , � �

i � � �

j . For each i such that
�reach

i is not empty, we add the following formula to ϕs:

�
�	
�s � ��

i� �� �
�	
 �
��

j��
reach
i

�s � ��

j���

��
 . (6)

For each i such that � reach
i is empty, we add the formula

����s � ��

i�� to ϕs to make sure that the continuous
controlled state will never lie in � �

i since there exists a point
in � �

i from which the transition to other discrete state may
not be achievable by the continuous controller.

4Volmin only provides a terminating criterion for the proposed algorithm.
Other criteria such as the maximum number of iterations can be used as
well.



From the formation of the optimal control problem (5)
and the propositional preserving property of the partition, it
is straightforward to show the following proposition.

Proposition 1: Let ϕ be an LTL formula which does not
contain the next (�) operator. Suppose a sequence of discrete
transition of D σd � ν0ν1 . . . satisfy ϕ and for each i ��0, 1, . . .�, νi � νj and for all s � νi, (5) is feasible.

V. RECEDING HORIZON TEMPORAL LOGIC
PLANNING

Automatic synthesis of a finite state automaton from
its LTL specification [1] suffers from the state explosion
problem. In many applications, however, the state that is
very far from the current state of the system does not affect
the determination of the near future plan. In this section,
we present a receding horizon scheme which potentially
substantially reduce the number of states of the automaton
while still ensuring the correctness of the system.

Given an LTL formula ϕ, the discrete domain of the
system � � � � � and a subset � � �, we let ϕ�

�
represent

the simplification of ϕ with restricted domain � � � by
assuming that the discrete controlled state of the system is
always contained in � . That is, ϕ�

�
is obtained from ϕ by

replacing any of its atomic propositions of a variable from S
which is assigned the value True when the discrete control
state s � � with False . In addition, let ϕ�

�
represent the

simplification of ϕ with restricted domain � � � which is
obtained from ϕ by replacing any of its atomic propositions
of a variable from S which is assigned the value True when
s � � with True or False such that ϕ �� ϕ�

�
is a

tautology, i.e. any discrete state v � � that satisfies ϕ also
satisfies ϕ�

�
. For example, suppose ϕ � ���s � �1� � �s �

�2� � �s � �3�� and � � ��1,�2�. Then, ϕ�
�

is obtained
by replacing the atomic formula �s � �3� with False , so we
get ϕ�

�
� ���s � �1� � �s � �2��. To obtain ϕ�

�
, we see

that to make ϕ �� ϕ�
�

a tautology, we need to replace the

atomic formula �s � �3� with True, so we get ϕ�
�
� True.

In this paper, we are interested in a subclass of generalized
Reactivity(1) formulas (2). Let (a) �init � �, (b) ϕinit be
a propositional formula of variables from V which charac-
terizes the initial state of the system (c) ϕe be a boolean
combination of propositional formulas of variables from V
and expressions of the form �ψe where ψe is a propositional
formula of variables from E which describes the assumptions
on the transitions of environment states. (d) for each j � J
where J is a finite set, ϕj be a propositional formula of
variables from V , (e) ϕs be a boolean combination of
propositional formulas of variables from V and expressions
of the form �ψs where ψs is a propositional formula of
variables from V which describes the constraints on the
transitions of system states, and (f) ϕg be a propositional
formula of variables from V . We consider a specification of

the form

��s � �init� � ϕinit � �ϕe � �j�J � � ϕj�
�� ��ϕs � �ϕg� (7)

For the progress property �ϕg , suppose there exists a
collection of disjoint subsets �1, . . . ,�p of � such that
�1 � �2 � . . . � �p � � , ϕg is satisfied for any v � �p,
and ���1, . . . ,�p�, 	ϕg� is a lattice where for any i and j,
�i 	ϕg �j if and only if any execution starting from v � � i

and satisfying the property��v � �p� contains a state v � �j .
Clearly, by the definition of 	ϕg , for any i � �1, . . . , p�,
�i 	ϕg �p.

Suppose there exists a propositional formula Φ of variables
from V such that ϕinit �� Φ is a tautology. Suppose
further that for each i � �1, . . . , p�, there exist subsets �i

and � i
init of � with

� ��i � S� � �i
init � �i,

� there exists gi � �1, . . . , p� where �i 	ϕg �gi and for
each i � p, �i 
ϕg �gi such that ��gi � S� � �i

such that

Ψi � ��s � �i
init� � Φ�

�i
init

� ��ϕe�
�i

� �
�j�J � � �ϕj�

�i

�� ��
���ϕs�

�i

� � ��v � �gi� � ��Φ�
�i

��
(8)

is realizable with the domain of S restricted to those in � i.
For i � �1, . . . , p�, let �i be an automaton which satisfies

Ψi. Since in the synthesis of �i, the domain of S is restricted
to�i, this can substantially reduce the number of states in the
automaton, especially when the size of �i is much smaller
than the size of �.
Receding Horizon Strategy: Starting from the state v0, pick
an automaton �i such that v0 � �i and execute �i until
the system reaches the state v � �j where �j �ϕg �i, at
which point, switch to the automaton �j . Keep iterating this
process until �p is executed.

Theorem 1: Suppose for each i � �1, . . . , p�, Ψi is real-
izable. Then the proposed receding horizon strategy ensures
the correctness of the system.

Proof: Consider an arbitrary execution σ of the system
that satisfies the formula to the left of �� in (7). From
the definition of � i

init, Φ�
�i

init

, ϕe�
�i

and ϕj�
�i

, it is easy

to show that if σ starts from v � �i such that v satisfies
Φ, then σ satisfies the formula to the left of �� in (8).
Let v0 � � be the initial state of the system. First, suppose
v0 � �p. Then, the system always executes �p and since
ϕinit �� Φ is a tautology, Ψp ensures that σ satisfies
(7). Next, suppose v0 � �i where i � p. Then, v0 � S �

�i
init and Ψi ensures that the safety property ϕs holds at

all the states in σ up to and including the state at which
the system switches the automaton and at this state, Φ is
satisfied. In addition, from the definition of 	ϕg , Ψi ensures
that eventually the system reaches the state vj � �j where
�i 
ϕg �j . According to the receding horizon scheme, the
system switch an automaton at this state. Since vj � �j and
vj satisfies Φ, from the previous argument, σ satisfies the



formula to the left of �� in (8). By the same argument
as for v0, Ψj ensures that the safety property ϕs holds at
all the states in σ after the system switches to �j and up
to and including the state at which the system switches the
automaton and at this state, Φ is satisfied. Keep iterating this
proof, we get that ϕs holds at all the states in σ and due to
the finiteness of the set ��1, . . . ,�p� and its partial order
structure, eventually the automaton �p is executed which
ensures that σ satisfies the progress property �ϕg .

Remark 3: Roughly speaking, identifying the partial order
structure of � is similar to finding a control Lyapunov
function in the receding horizon control (RHC) framework.
In RHC, a control Lyapunov function provides a partial order
structure for a special case of the system whose evolution is
modeled by a differential equation and whose state lies in
a normed real vector space. In our temporal logic planning
framework, the evolution of the system is modeled by the
transitions between discrete states in the automaton. The
cardinality of the chain ��i, �gi� in the partial order structure
can be viewed as the horizon length for the automaton � i.

Remark 4: The propositional formula Φ (which can be
viewed as an invariant of the system) adds a constraint on the
initial state of the system assumed by each of the automata
and is used to make Ψi realizable. One way to determine Φ
is to start with Φ � True and check the realizability of the
resulting Ψi. If for any i � �1, . . . , p�, Ψi is realizable, we
are done. Otherwise, the synthesis process provides the initial
state of the system for which there exists a set of moves of
the environment such that the system cannot satisfy Ψ i. This
information provides guidelines for constructing Φ.

VI. EXAMPLE

We consider a point-mass omnidirectional vehicle navi-
gating a straight road while avoiding obstacles and obeying
certain traffic laws. It was shown in [15] that the nondimen-
sional equations of motion of the vehicle is given by

��������
ẍ
ÿ

θ̈

��������
�

��������
ẋ
ẏ

2mL2

J θ̇

��������
�

�������
qx
qy
qθ

������� (9)

with the following constraints on the control efforts

�t, q2x�t� � q2y�t� � �3 � �qθ�t��
2 �2

and �qθ�t�� � 3. (10)

Conservatively, we can set �qx�t�� � �
0.5, �qy�t�� � �

0.5
and �qθ�t�� � 1 so that the constraints (10) are decoupled.

In this section, we are only interested in the translational
(x and y) components of the vehicle state. Discretizing the
dynamics (9) with time step 0.1, we obtain the following
discrete-time linear time-invariant state space model

� z�t � 1�
vz�t � 1� � � � 1 0.0952

0 0.9048 � � z�t�
vz�t� � � � 0.0048

0.0952 � qz (11)

where z represents either x or y and vz represents the rate
of change in z. Let Cz be the domain of the vehicle state

projected onto the �z, vz� coordinates. We restrict the domain
Cz to �zmin, zmax� � ��1, 1� and partition Cz as

Cz � �
i��zmin�1,...,zmax�

Cz,i (12)

where Cz,i � �i � 1, i� � ��1, 1� as shown in Figure 2.
Throughout the section, we call this partition the original
partition of the domain Cz .

Fig. 2. The original partition of the domain Cz

We consider the road with 2 lanes, each of width 1, so
we set ymin � 0 and ymax � 2. Since the vehicle dynamics
are translational invariant, without loss of generality, we set
xmin � 0 and xmax � L where L is the length of the road.

For each i � �1, . . . , L� and j � �1, 2�, we define a
boolean variable Oi,j which is assigned the value True
if and only if an obstacle is detected at some position�xo, yo� � �i � 1, i� � �j � 1, j�. The state of the system is
therefore a tuple �x, vx, y, vy, O1,1, O1,2, . . . , OL,1, OL,2�
where �x, vx, y, vy� � �0, L� � ��1, 1� � �0, 2� � ��1, 1�
is the vehicle state or the controlled state and�O1,1, O1,2, . . . , OL,1, OL,2� � �0, 1�2L is the environment
state.

A. System Specification

We assume that at the initial configuration, the vehicle is
at least dobs away from any obstacle and that the vehicle
starts in the right lane. That is, ϕinit in (7) is defined as for
any i � �1 � dobs, . . . , L � dobs�,
�
x �

i�dobs

�
k�i�dobs

Cx,k �� ��Oi,1 � �Oi,2��
 � y � Cy,1. (13)

The following properties are assumed for the environment.
1) An obstacle is always detected before the vehicle gets

too close to it. That is, there is a lower bound dpopup

on the distance from the vehicle for which obstacle
is allowed to instantly pop up. An LTL formula cor-
responding to this assumption is a conjunction of the
following formula

�
�
�
x �

i�dpopup

�
j�i�dpopup

Cx,j � �Oi,k
�
 �� ���Oi,k��
 (14)

for all i � �1 � dpopup, . . . , L � dpopup� and k � �1, 2�.
2) Sensing range is limited. That is, the vehicle cannot

detect an obstacle that is away from it farther than dsr.
An LTL formula corresponding to this assumption is a
conjunction of the following formula

�
�
x � Cx,i �� 


j�i�dsr

��Oj,1 � �Oj,2��
 (15)



for all i � �1, . . . , L�.
3) The road is not blocked. That is, for any i � �1, . . . , L�,

� ��Oi,1 � �Oi,2� (16)

4) To make sure that the stay-in-lane requirement (see
below) is achievable, we assume that an obstacle on
the right lane does not disappear. That is, for any
i � �1, . . . , L�,

� �Oi,1 �� ��Oi,1�� (17)

We define �ϕe in (7) to be the conjunction of formula (14)-
(17). (Note that for any LTL formulas ϕ and ψ, �ϕ � �ψ
is equivalent to ��ϕ � ψ�.)

Next, we define the desired safety property, �ϕs, as the
conjunction of the following properties:

1) No collision. That is, for any i � �1, . . . , L� and j ��1, 2�,
��Oi,j �� ��x � Cx,i � y � Cy,j�� (18)

2) The vehicle stays in the right lane unless there is
an obstacle blocking the lane. That is, for any i ��1, . . . , L�

����Oi,1 � x � Cx,i� �� �y � Cy,1�� (19)

Finally, we define ϕg � �x � Cx,L�. That is, we want to
guarantee that eventually the vehicle gets to the end of the
road.

B. State Space Discretization

Since the dynamics and the constraints on the control
efforts for the x and y components of the vehicle state are
decoupled, we apply the discretization algorithm presented in
Section IV for the x and y components separately for the sake
of computational efficiency5. Since the vehicle dynamics (9)
are translational invariant, we can use similar partition for
all Cz,i. The discretization algorithm with horizon length
N � 10 and Volmin � 0.1 yields 11 partitions for each Cz,i

as shown in Fig. 3. Using MPT [4], the reachability between
different cells in the new partition can be determined and a
set of atomic controllers associated with a pair of cells can
be generated such that the bisimulation property is satisfied.
The original specification is then modified as discussed in
Section IV-C.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,
there are the total of 242 � L discrete vehicle states and
22�L discrete environment states. Thus, in the worst case,
the resulting automaton may have as many as 242�L�22�L

nodes. To avoid the state explosion problem, we apply
the receding horizon strategy on the variable x. For i ��zmin�1, . . . , zmax�, let �z,i � ��1

z,i, �
2
z,i, . . . , �

11
z,i� be the

5Before performing the discretization, we partition each Cz,i into
�C�

z,i � C
�

z,i� where C�

z,i � �i� 1, i�� �0, 1� and C�

z,i � �i� 1, i�� ��1, 0�
to allow the possibility of enforcing other traffic laws such as disallowing
reverse motion of the vehicle.

i−1 i
−1

0

1

z

v z

Fig. 3. The partition of each cell Cz,i in the original partition of
the domain Cz

partition of Cz,i. The partial order structure is defined as �i ���x, vx, y, vy, O1,1, . . . , OL,2� � x � ��1
z,i, �

2
z,i, . . . , �

11
z,i��. It

can be easily shown that for any i 
 j, �i 
ϕg �j since to
get to the cell Cx,L starting from Cx,i, the system needs to
visit a cell Cx,j for any j � i.

Next, we need to define an invariant Φ such that the
specification (7) is realizable. Similar to z, we let � represent
either 	 or 
 . We classify the cells in the new partition into
one of the following catagories:

1) A set �notr of cells from which the system cannot
transition to any cells. That is, for any � � �notr ,
i � �zmin�1, . . . , zmax� and j � �1, . . . , 11�, � � �

j
z,i.

2) A set �right of cells from which the system can only
transition to a cell to the right of it in the original
partition. That is, for any � � �right such that � � Cz,i,
there exists k � �1, . . . , 11� such that � � �k

z,i�1. In
addition, for any j � i�1 and k � �1, . . . , 11�, � � � k

z,j .
3) A set �left of cells from which the system can only

transition to a cell to the left of it in the original
partition. That is, for any � � �left such that � � Cz,i,
there exists k � �1, . . . , 11� such that � � �k�

z,i�1. In
addition, for any j � i�1 and k � �1, . . . , 11�, � � � k

z,j .
4) A set �same of cells from which the system can only

transition to the same cell in the original partition. That
is, for any � � �same such that � � Cz,i, there exists
k � �1, . . . , 11� such that � � �k

z,i. In addition, for any
j � i and k � �1, . . . , 11�, � � �k

z,j .
5) A set �both of cells from which the system can tran-

sition to both the same cell in the original partition
and a different cell in the original partition. That is,
for any � � �both such that � � Cz,i, there exists
k � �1, . . . , 11� such that � � �k

z,i. In addition, there
exists j � i and k � �1, . . . , 11� such that � � �k

z,j .
To restrict the initial states of the system assumed by Ψi

so that Ψi is realizable, we make the following observations.
1) To ensure the progress property �ϕg, x cannot be in a

cell � � 	notr and y cannot be in a cell � � 
notr .
2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.
3) Suppose x is in the cell Cx,i in the original partition. To

ensure no collision, if y can only transition to the cell
Cy,1 in the original partition, then either Oi,1 is False
or Oi�1,1 is False . Similarly, if y can only transition to



the cell Cy,2 in the original partition, then either Oi,2

is False or Oi�1,2 is False .
4) Suppose x is in the cell Cx,i in the original partition

such that it can only transition to the cell to the right
of it in the original partition. To ensure no collision,
if y can only transition to the cell Cy,1 in the original
partition, then Oi�1,1 is False . Similarly, if y can only
transition to the cell Cy,2 in the original partition, then
Oi�1,2 is False .

5) Suppose x is in the cell Cx,i in the original partition
such that it can only transition to the same cell Cx,i in
the original partition. To ensure no collision, if y is in
the cell Cy,2 and can only transition to a cell Cy,1 in
the original partition, then Oi,1 is False . Similarly, if y
is in the cell Cy,1 and can only transition to a cell Cy,2

in the original partition, then Oi,2 is False .
6) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking
the right lane at the initial state. In addition, the vehicle
is never in the state where x can only transition to the
same cell in the original partition and y is in the cell
Cy,1 in the original partition and can only transition to
the cell Cy,2 in the original partition.

7) Suppose x is in the cell Cx,i in the original partition and
Oi�1,1 is False. To ensure that the vehicle does not go to
the left lane when the right lane is not blocked, it is not
the case that y is in the cell Cy,1 in the original partition
and y can only transition to the cell Cy,2 in the original
partition. In addition, it is not the case that x can only
transition to the cells Cx,i�1 in the original partition and
y is in the cell Cy,2 in the original partition can only
transition to the same cell in the original partition.

Based on the above observations, we define Φ to be the
conjunction of the following formulas:

1) ������notr
x � �� � ������notr

y � ��
2) Oi,j �� ��x � Cx,i � y � Cy,j�
3) ��������same

y � �� � ��j��1,...,11� y � �
j
y,1�� �������left

y � �� � ��j��1,...,11� y � �
j
y,2��� ���j��1,...,11� x � �

j
x,i�� �� ��Oi,1 � �Oi�1,1�

4) ��������right
y � �� � ��j��1,...,11� y � �

j
y,1�� �������same

y � �� � ��j��1,...,11� y � �
j
y,2��� ���j��1,...,11� x � �

j
x,i�� �� ��Oi,2 � �Oi�1,2�

5) ��������same
y � �� � ��j��1,...,11� y � �

j
y,1�� �������left

y � �� � ��j��1,...,11� y � �
j
y,2��� �������right

x � �� � ��j��1,...,11� x � �
j
x,i��� ��

�Oi�1,1

6) ��������right
y � �� � ��j��1,...,11� y � �

j
y,1�� �������same

y � �� � ��j��1,...,11� y � �
j
y,2��� �������right

x � �� � ��j��1,...,11� x � �
j
x,i��� ��

�Oi�1,2

7) �������same
x � �� � ��j��1,...,11� x � �

j
x,i�� �������left

y � �� � ��j��1,...,11� y � �
j
y,2��� �� �Oi,1

8) �������same
x � �� � ��j��1,...,11� x � �

j
x,i�� �������right

y � �� � ��j��1,...,11� y � �
j
y,1��� ��

�Oi,2

9) ���j��1,...,11� x � �
j
x,i� � ��j��1,...,11� y � �

j
y,2�� ��

Oi,1

10) ��������same
x � �� � ��j��1,...,11� x � �

j
x,i�� �������right

y � �� � ��j��1,...,11� y � �
j
y,1���

11) �Obsi�1,1 �� ����j��1,...,11� x � �
j
x,i� ��������right

y � �� � ��j��1,...,11� y � �
j
y,1�� ��������right

x � �� � ��j��1,...,11� x � �
j
x,i�� �������same

y � �� � ��j��1,...,11� y � �
j�
y,2�����

The first formula constrains the state of the system to
ensure that the progress property is satisfied (observation 1).
The next seven formulas constrain the state of the system
to ensure that the obstacle avoidance property is satisfied
(observations 2-5) and the last three formulas constrain the
state of the system to ensure that the stay-in-lane property is
satisfied (observations 6-7).

With dpopup � 1 and the horizon length 2 (i.e. g i � i � 2),
the specification (8) is realizable. In addition, if we let dobs

be greater than 1 and restrict the initial state of the system
such that x is not in a cell � � 	notr and y is not in a cell

notr , we get that ϕinit �� Φ.

D. Results

The synthesis was performed on a Pentium 4, 3.4 MHz
computer with 4 Gb of memory. The computation time was
1230 seconds. The resulting automaton contains 2845 nodes.
During the synthesis process, 96796 nodes were generated.
Based on the authors experience, this particular computer
crashes when approximately 97500 nodes are generated.
Thus, this problem with horizon length 2 is as large as
what the computer can handle. This means that without the
receding horizon strategy, problems with the road of length
greater than 3 cannot be solved.

A simulation result with the road length of 30 is shown in
Fig. 4. The polygons drawn in red are the obstacles. Notice
that when there is no obstacle blocking the lane, the vehicle
tries to stay as close to the lane boundary (y � 1) as possible.
This is expected since to be able to avoid a pop up obstacle,
due to the constraint on the admissible control inputs, the
vehicle needs to stay close to the lane boundary to be able
to change lane. To force the vehicle to stay close to the center
of the lane, we need a finer partition of the road and extra
LTL formula to ensure this property needs to be added to
the system specification.

VII. CONCLUSIONS AND FUTURE WORK

This paper illustrated how off-the-shelf tools from com-
puter science and control can be integrated to allow auto-
matic synthesis of complex dynamical systems which are
guaranteed, by construction, to satisfy the desired properties
expressed in temporal logic even in the presence of adversary.
A receding horizon scheme was described which addresses
the main limitation of the synthesis algorithm, the state
explosion problem, and allows more complex problems to be
solved, assuming that the system has a lattice structure. The
example showed that without the receding horizon scheme,



0 5 10 15 20 25 30
0.95

1

1.05

x

y

Fig. 4. Simulation result. The polygons drawn in red are the
obstacles.

the synthesis problem can be extremely computationally
challenging.

Although the adversary nature of the environment has been
incorporated in the synthesis, the effects of disturbances and
modelling errors have not yet been studied. To increase the
robustness of the system, we plan to impose more conditions
on the multiparametric programming problem so that the
continuous control law can be executed in a closed loop
manner. In addition, the system specification needs to be
modified to allow the possibility that the system may deviate
from the plan due to disturbances and modelling errors.

Automatic or semi-automatic computation of an invariant
Φ in the receding horizon scheme based on the information
provided by the synthesis tool is also of interest. This direc-
tion sounds promising since as described in the paper, Φ can
be constructed by iteratively adding, until the specification is
realizable, a propositional formula which describes the initial
state of the system for which there exists a set of moves of
the environment such that the system cannot satisfy Ψ i.
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