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Abstract— This paper bridges the advances in computer
science and control to allow automatic synthesis of control
strategies for complex dynamical systems which are guaranteed,
by construction, to satisfy the desired properties even in the
presence of adversary. The desired properties are expressed
in the language of temporal logic. With its expressive power,
a wider class of properties than safety and stability can be
specified. The resulting system consists of a discrete planner
that plans, in the abstracted discrete domain, a set of transitions
of the system to ensure the correct behaviors and a continuous
controller that continuously implements the plan. To address the
computational difficulties in the synthesis of a discrete planner,
we present a receding horizon based scheme for executing finite
state automata that essentially reduces the synthesis problem
to a set of smaller problems.

I. INTRODUCTION
Recent advances in computer science, such as the devel-

opment of a polynomial-time algorithm to construct finite
state automata from their temporal logic specifications [1],
enable automatic synthesis of digital designs that satisfy a
large class of properties even in the presence of an adversary
(typically arising from changes in the environments). On the
other hand, recent advances in control and the abundance
of computational resources enable automatic synthesis of
continuous controllers that ensure safety and stability even
in the presence of disturbances and modeling errors [2], [3],
[4]. In many applications, systems need to perform complex
tasks and interact with (potentially adversarial) environments.
Such systems usually contain both continuous (physical) and
discrete (computational) components. A major challenge is
to integrate the methods from computer science and control
such that automatic synthesis of such systems is possible.

Hybrid system theory has been developed to handle sys-
tems that contain both discrete and continuous components.
Control of hybrid systems has been studied extensively but
properties of interest are typically limited to stability and
safety [5], [6]. For systems to perform complex tasks, a
wider class of properties such as guarantee (e.g. eventually
perform task 1 or task 2 or task 3) and response (e.g. if
the system fails, then eventually perform task 1 or perform
tasks 1, 2 and 3 infinitely often in any order) need to be
considered. Temporal logics have therefore garnered great
interest due to their expressive power. In particular, Kwon
and Agha [7] introduced LTLC, an extension of conventional
linear temporal logic for specifying properties of discrete-
time linear systems, and described LTLC model checking
that allows a sequence of control inputs to be automatically
computed such that a complex control objective expressed in
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LTLC is satisfied. To make LTLC model checking decidable,
its scope is limited to systems that reach a steady state in
finite time. Karaman et al. [8] proposed a method based on
mixed integer linear programming to incorporate temporal
logic in control. The interaction with environments, however,
was not taken into consideration.

The development of language equivalence and bisimula-
tion notions allows abstraction of the continuous component
of the system to a purely discrete model while preserving
all the desired properties [9]. This subsequently provides
a hierarchical approach to system design. In particular, a
two-layer design is common and widely used in the area
of planning and control [10], [11], [12], [13], [14]. In the
first layer, a discrete planner plans, in the abstracted discrete
domain, a set of transitions of the system to ensure the
satisfaction of the desired properties. This abstract plan is
then continuously implemented by a continuous controller
in the second layer. Simulations/bisimulations provide the
proof that the continuous execution preserves the desired
properties. One of the main challenges of this approach
is in the abstraction of continuous, infinite-state systems
into equivalent (in the simulation sense) finite state models.
Special cases of fully actuated (�̇ = �), kinematic (�̇ =
�(�)�), piecewise affine (PWA) and discrete-time control-
lable linear systems have been studied in [10], [11], [12]
and [13] respectively. Reference [14] deals with more general
dynamics by using the notions of approximate simulation and
simulation functions [15]. However, similar to a Lyapunov
function, a simulation function can be difficult to compute.

Another main challenge of the two-layer approach is
the computational complexity in the synthesis of discrete
planners. Although it has been shown that for a certain class
of properties, known as Generalized Reactivity(1), a discrete
planner can be automatically computed in polynomial time
[1], the applications of the synthesis tool are limited to small
problems due to the state explosion issue.

This paper partially addresses both of the aforementioned
challenges. First, we present a fully automated approach
to construct a finite state abstraction of a system with
PWA dynamics. A notion of reachability is defined that is
sufficient to ensure that the continuous execution preserves
the correctness of the discrete plan. The requirement of
a bisimulation abstraction is then relaxed to a simulation
abstraction that is enforced by restricting the set of discrete
plans to those satisfying the reachability relation, which can
be established by solving a multi-parametric programming
problem. The Multi-Parametric Toolbox [4] provides an off-
the-shelf computational machinery that enables the multi-
parametric programming problem to be solved in an auto-
mated fashion. As opposed to the approach proposed by



Kloetzer and Belta [12] where the state space is partitioned
based solely on the linear predicates appearing in the desired
properties, our approach allows refinement of the predicate-
based partition of the state space. This subsequently reduces
the conservativeness of simulation abstractions and enables
us to identify the set of initial states starting from which
a control law that ensures the satisfaction of the desired
properties cannot be found and allows the synthesis problem
to be solved assuming that the system starts from other
states. Together with the digital design synthesis tool [1],
our technique allows automatic design of dynamical systems
that satisfy a wide range of properties expressed in temporal
logic, taking into account the interaction with potentially
adversarial environments.

Second, to partially address the state explosion problem
in digital design synthesis, we introduce a receding horizon
scheme for executing finite state automata while ensuring
system correctness. This allows the synthesis to be performed
on a smaller domain and thus potentially substantially reduce
the size of the synthesis problem. Although the proposed
approach is not completely automatic, to the authors’ knowl-
edge, it is the first time that a receding horizon technique is
applied to finite state automata and ensures more sophisti-
cated properties than stability, safety and convergence.

II. PRELIMINARIES
We use linear temporal logic (LTL) to describe the desired

properties of the system. Given an LTL formula, we want to
construct a finite state automaton, which can be thought of
as a graph with a finite number of nodes (representing the
states of the system) and edges (representing the transitions
between states), such that the state transitions in the automa-
ton ensure the correctness of the system. In this section, we
briefly describe the definition of LTL and the synthesis of a
finite state automaton which satisfies a given LTL formula.
A. Terminology and Notations

Definition 1: A system consists of a set � of variables.
The domain of � , denoted by dom(� ), is the set of valua-
tions of � . A state of the system is an element � ∈ dom(� ).

Definition 2: A finite transition system is a tuple � =
(� ,→) where � is a finite set of states, and → ⊆ �×� is a
transition relation. Given states ��, �� ∈ � , we write �� → ��
if there is a transition from �� to �� .

Definition 3: An atomic proposition is a statement on
system variables � that has a unique truth value (True or
False) for a given value of �. Let � ∈ dom(� ) be a state of
the system and 	 be an atomic proposition. We write � ⊩ 	
if 	 is True at the state �. Otherwise, we write � ⊮ 	.

Definition 4: An execution of a discrete-time system is an
infinite sequence of the states of the system over a particular
run, i.e., an execution 
 can be written as 
 = �0�1�2 . . .
where for each � ≥ 0, �� ∈ dom(� ) is the state of the system
at time �.

B. Linear Temporal Logic
The use of linear temporal logic (LTL) as a specification

language was introduced by Pnueli [16], [17]. LTL is built
up from a set of atomic propositions, the logic connectives

(¬, ∨ , ∧ , =⇒), and the temporal modal operators (�, □,�, � which are read as “next,” “always,” “eventually,” and
“until,” respectively). An LTL formula is defined inductively
as follows: (1) any atomic proposition 	 is an LTL formula;
and (2) given an LTL formula  and �, the following are also
LTL formulas: ¬,  ∨ �, � and  � �. Other operators
can be defined as follows:  ∧ � = ¬(¬ ∨ ¬�),  =⇒
� = ¬ ∨ �, � = True � , and □ = ¬�¬. A
propositional formula is one that does not include temporal
operators. Given a set of LTL formulas 1, . . . , �, their
boolean combination is an LTL formula formed by joining
1, . . . , � with logic connectives.
Semantics of LTL: An LTL formula is interpreted over
an infinite sequence of states. Given an execution 
 =
�0�1�2 . . . and an LTL formula , we say that  holds at
position � ≥ 0 of 
, written �� ∣= 
, if and only if  holds for
the remainder of the execution 
 starting at position �. The
semantics of LTL is defined inductively as follows: 1) For
an atomic proposition 	, �� ∣= 	 iff �� ⊩ 	; 2) �� ∣= ¬ iff
�� ∣∕= ; 3) �� ∣=  ∨ � iff �� ∣=  or �� ∣= �; 4) �� ∣= �
iff ��+1 ∣= ; and 5) �� ∣=  � � iff ∃� ≥ �, �� ∣= � and
∀� ∈ [�, �), �� ∣= . Based on this definition, □ holds
at position � iff  holds at every position in 
 starting at
position �, and � holds at position � iff  holds at some
position � ≥ � in 
.

Definition 5: An execution 
 = �0�1�2 . . . satisfies ,
denoted by 
 ∣= , if �0 ∣= .

Definition 6: Let Σ be the set of all executions of a
system. The system is said to be correct with respect to its
specification , written Σ ∣= , if all its executions satisfy
, that is, (Σ ∣= ) ⇐⇒ (∀
, (
 ∈ Σ) =⇒ (
 ∣= )

)
.

C. Synthesis of Finite State Automata

In many applications, systems need to interact with their
environments and whether they satisfy the desired proper-
ties depends on what the environments do. For example,
whether an autonomous car exhibits the correct behavior at
an intersection depends on the behavior of other cars at the
intersection, e.g. which car gets to the intersection first, etc.
In this section, we informally describe the work of Piterman,
et al. [1]. We refer the reader to [1] and references therein
for the detailed discussion of automatic synthesis of a finite
state automaton from its specification.

From Definition 6, for a system to be correct, its specifica-
tion  must be satisfied regardless of what the environment
does. Thus, the environment can be treated as adversary and
the synthesis problem can be viewed as a two-player game
between the system and the environment: the environment
attempts to falsify  while the system attempts to satisfy .
We say that  is realizable if the system can satisfy  no
matter what the environment does.

For a specification of the form

(
⋀
�∈�
□��) =⇒ (

⋀
�∈�
□���), (1)

known as Generalized Reactivity(1), Piterman et al. shows
that checking its realizability and synthesizing the corre-
sponding automaton can be performed in polynomial time.



In particular, we are interested in a specification of the form

 = (�=⇒	) (2)

where roughly speaking, � characterizes the initial states
of the system and the assumptions on the environment and
	 describes the correct behavior of the system, including
the valid transitions the system can make. We refer the
reader to [1] for precise definitions of � and 	. Note that
since � =⇒ 	 is satisfied whenever � is False , if the
assumptions of the environment or the initial state of the
system violate �, the correct behavior 	 of the system is
not ensured, even though the specification  is satisfied.

If the specification is realizable, the synthesis tool gener-
ates a finite state automaton that represents a set of transitions
the system should follow in order to satisfy . Otherwise,
it provides an initial state of the system starting from which
there exists a set of moves of the environment such that the
system cannot satisfy . The knowledge of the realizability
of the specification is useful since it provides information
about the conditions under which the system will fail to
satisfy its desired properties.

The main limitation of the synthesis of finite state au-
tomata is the state explosion problem. In the worst case, the
resulting automaton may contain all the possible states of the
system. For example, if the system has 10 variables, each can
take any value in {1, . . . , 10}, then there may be as many as
1010 nodes in the automaton.

III. PROBLEM FORMULATION
Consider a system � with a set of variables � = � ∪ �

where � and � represent, respectively, the set of variables
controlled by the system and the set of variables controlled
by the environment. For example, for an obstacle avoidance
problem where a robot needs to navigate an environment
populated with obstacles, � may include the state of the robot
while � may include the positions of obstacles. The domain
of � is therefore given by dom(� ) = dom(�) × dom(�)
and a state of the system can be written as � = (�, �) where
� ∈ dom(�) and � ∈ dom(�). Throughout the paper, we
call � the controlled state and � the environment state.

Assume that the controlled state evolves according to the
following discrete-time piecewise-affine (PWA) dynamics1:
�[�+ 1] = ���[�] +���[�] + �� if (�[�], �[�]) ∈ Ω�

�[�] ∈ �
(3)

where � ∈ {1, . . . , �PWA}, �PWA is the number of re-
gions in the PWA partition, � is the set of admissible
control inputs, {Ω1, . . . ,Ω
PWA} is a polyhedral partition of
dom(�) × � , for any natural number �, �[�] ∈ dom(�) is
the controlled state at time � and � is the control signal.

Let Π be a finite set of atomic propositions of variables
from � and  be an LTL specification built from Π. Suppose
 is a Generalized Reactivity(1) formula of the form (2)
and can be expressed without the next operator (�). 2 We
want to design a controller that ensures that any execution

1We restrict ourselves to PWA dynamics for computational reasons. Our
framework straightforwardly generalizes to nonlinear dynamics.

2This assumption is sufficient to ensure that � is stutter invariant. See,
for example, [18] for more detail.


 = �0�1 . . . of the system satisfies  where for each natural
number �, �� ∈ dom(� ) is the state of the system at time �.

IV. HIERARCHICAL APPROACH
In general, constructing a controller that ensures that any

execution of the system satisfies the specification  while
respecting the dynamics (3) is hard since both the adversarial
nature of the environment and the dynamics of the system
need to be taken into account. To separate the concern of the
environment from the concern of the dynamics, we apply a
hierarchical approach to solve the problem defined in Section
III. That is, we decompose the problem into (a) designing
a discrete planner that computes a discrete plan satisfying
the specification  regardless of what the environment does
and (b) designing a continuous controller that implements the
discrete plan while ensuring that the evolution of the system
satisfies the dynamics (3).

The discrete planner can be automatically synthesized
using the digital design synthesis tool [1] as described in
Section II-C. However, since the synthesis algorithm requires
a finite domain, the system � must be abstracted to a finite
transition system. To construct a finite transition system �

from �, we first partition dom(�) and dom(�), as in [10],
[12], into a finite number of equivalence classes or cells �
and ℰ , respectively, such that the partition is proposition
preserving [9]. Roughly speaking, this means that for any
atomic proposition 	 ∈ Π and any states �1 and �2 that
belong to the same cell in the partition, if �1 satisfies 	, then
�2 also satisfies 	. We denote the resulting discrete domain
of the system by � = � × ℰ . Throughout the paper, we call
� ∈ dom(� ) a continuous state and � ∈ � a discrete state
of the system. For a discrete state � ∈ � , we say that �
satisfies an atomic proposition 	 ∈ Π, denoted by � ⊩� 	, if
and only if there exists a continuous state � contained in the
cell labeled by � such that � ⊩ 	. Given an infinite sequence
of discrete states 
� = �0�1�2 . . . and an LTL formula  built
from Π, we say that  holds at position � ≥ 0 of 
�, written
�� ∣=� , if and only if  holds for the remainder of 
�
starting at position �. With these definitions, the semantics
of LTL for a sequence of discrete states can be derived from
the general semantics of LTL defined in Section II-B.

Next, we need to determine the transition relations → of
�. Since constructing a bisimulation partition for a general
system with PWA dynamics is hard and such a partition
may not be finite, in this section, we relax the requirement
that the partition is bisimulation and define the notion of
reachability that is sufficient (but not necessary) to guarantee
that if a discrete controlled state �� is reachable from ��, the
transition from �� to �� can be continuously implemented
or simulated by a continuous controller. (See, for example,
[19] for the exact definition.) A computational scheme that
provides a sufficient condition for reachability between two
discrete controlled states and subsequently refines the state
space partition is also presented in Section IV-B.
A. Reachability

Let � = {�1,�2, . . . ,��} be a set of discrete controlled
states. We define a map �	 : dom(�) → � that sends a
continuous controlled state to a discrete controlled state of



its equivalence class. That is, �−1
	 (��) ⊆ dom(�) is a set

of all the continuous controlled states contained in the cell
labeled by �� and {�−1

	 (��), . . . , �−1
	 (��)} is the partition

of dom(�). We define the reachability relation, denoted by
⇝, as follows: a discrete state �� is reachable from a discrete
state ��, written �� ⇝ �� , only if starting from any point
�[0] ∈ �−1

	 (��), there exists a control law � ∈ � that takes
the system (3) to a point �[� ] ∈ � −1

	 (��) satisfying the
constraint �[�] ∈ �−1

	 (��) ∪ �−1
	 (��), ∀� ∈ {0, . . . , �} for

some horizon length � . Note that this is stronger than the
usual definition of reachability [20]. We write � � ∕⇝ �� if ��
is not reachable from ��.

In general, for two discrete states �� and �� , verifying
the reachability relation �� ⇝ �� is hard. Therefore, we
resort to a heuristic based on the following optimal control
problem: Given discrete controlled states ��,�� ∈ �, the set
of admissible control inputs � , the matrices �� and �� as in
(3), a horizon length � ≥ 0 and the cost matrices �
 , � ર 0
and � ≻ 0, solve

min
�[0],...,�[
−1]

∥�
 �̂[� ]∥2 +

−1∑
�=0

∥��̂[�]∥2 + ∥��[�]∥2
s.t. �[� ] ∈ �−1

	 (��), �[0] ∈ dom(�)
�[�+ 1] = ���[�] +���[�] if (�[�], �[�]) ∈ Ω�
�[�] ∈ �
�[�] ∈ �−1

	 (��) ∪ �−1
	 (��)

∀� ∈ {0, . . . , � − 1}
(4)

where for any � ∈ {0, . . . , �}, �̂[�] = �[�] − �� for some
chosen �� ∈ �−1

	 (��) (e.g. �� may be the center of the
cell labeled by �� ). Note that (4) is a finite horizon optimal
control problem. Furthermore, one can consider the problem
in (4) as a family of problems parametrized by �[0] and it can
be regarded as a multi-parametric programming problem [3].
For the case where �−1

	 (��), �−1
	 (��), and � are polytopic

sets, i.e., sets defined by affine inequalities, the explicit
solution for this multi-parametric programming problem (i.e.,
the sequence of control inputs �[0], . . . , �[� − 1] as a
function of �[0] and the set ��,� ⊆ �−1

	 (��)∪�−1
	 (��) such

that (4) is feasible for all �[0] ∈ ��,�) can be computed
using the Multi-Parametric Toolbox [4]. We refer the reader
to [21] for a detailed discussion on how this multi-parametric
programming problem can be solved. An example of a set
��,� along with �� and �� is shown in Figure 1.

Fig. 1. An example of a set ��,� represented by the unshaded region. For
any �[0] in the shaded region, the optimal control problem (4) is infeasible.
Different unshaded regions have different associated controllers. For more
detail, see [4].

B. State Space Discretization
In general, given the previous partition of dom(�) and

any �, � ∈ {1, . . . , �}, the reachability relation between ��
and �� may not be established through the solution of the

TABLE I

DISCRETIZATION ALGORITHM

Discretization Algorithm
input: The lower bound on cell volume (Volmin ), the parameters �� ,

�� , Ω� , � , � , �� , �, 	 of the multi-parametric programming
problem, and the original partition ({
−1

� (��) ∣ � ∈ {1, . . . , �}})
output: The new partition sol

sol = {
−1
� (��) ∣ � ∈ {1, . . . , �}}; IJ = {(�, �) ∣ �, � ∈ {1, . . . , �}};

while (size(IJ ) > 0)
Pick an (�, �) ∈ IJ ;
Solve the multi-parametric programming problem for ��,� ;
if (volume(sol [�] ∩ ��,�) > Volmin and

volume(sol [�] ∖ ��,�) > Volmin ) then
Replace sol [�] with sol [�] ∩ ��,� and add sol [�] ∖ ��,� to sol ;
For each � ∈ {1, . . . , size(sol)}, add (�, �), (�, �),

(size(sol), �) and (�, size(sol)) to IJ ;
else

Remove (�, �) from IJ ;
endif

endwhile

multi-parametric programming problem (4) since � −1
	 (��) is

not necessarily covered by ��,� (due to the constraints on �
and a specific choice of the finite horizon � ). This section
describes a state space discretization scheme based on the
reachability relation defined earlier to increase the number
of valid discrete state transitions of �. The underlying idea
is that for each �� and �� , we determine ��,� such that
for any �[0] ∈ ��,� , the problem in (4) is feasible. Then,
we partition �−1

	 (��) into �−1
	 (��) ∩ ��,� , labeled by ��,1

and �−1
	 (��) ∖ ��,� , labeled by �−1

	 (��,2) and obtain the
following reachability relations: ��,1 ⇝ �� and ��,2 ∕⇝ �� .
Discretization Algorithm: Pick a natural number � and the
cost matrices �
 , � and �. Define a lower bound Volmin

on the volume of each cell in the new partition. Starting with
a pair (�, �) where �, � ∈ {1, . . . , �}, determine the set ��,�
such that for any �[0] ∈ ��,� , the problem in (4) is feasible.
If the volumes of both � −1

	 (��)∩��,� and �−1
	 (��)∖��,� are

greater than Volmin , then partition �−1
	 (��) into �−1

	 (��)∩
��,� and �−1

	 (��) ∖ ��,� . Repeat this process until none of
the cells can be partitioned. Table I shows the pseudo-code
of the algorithm.

Remark 1: Volmin only provides a terminating criterion
for the proposed algorithm. Other criteria such as the maxi-
mum number of iterations can be used as well.

Remark 2: The proposed discretization algorithm termi-
nates when no cell can be partitioned such that the volumes
of the two resulting new cells are both greater than Vol min .
Larger Volmin causes the algorithm to terminate sooner.

Remark 3: The point at which the algorithm terminates
affects the reachability between discrete controlled states of
the new partition and as a result, affects the realizability
of the specification. Generally, a coarse partition makes the
specification unrealizable but a fine partition causes state
space explosion. A way to decide when to terminate the
algorithm is to start with a coarse partition and keep refining
it until the specification is realizable.

C. Correctness of the System
Let � ′ = {� ′

1,� ′
2, . . . ,� ′

�} be the set of all the dis-
crete controlled states corresponding to the resulting par-
tition of dom(�) after applying the discretization algo-



rithm proposed in Section IV-B. Since the partition ob-
tained from the proposed algorithm is a subpartition of
{�−1

	 (�1), . . . , �−1
	 (��)} and � = � × ℰ is proposition

preserving, it is trivial to show that � ′ = � ′ × ℰ is also
proposition preserving. We define the finite transition system
� that serves as the abstract model of � as follows: � ′ =
� ′ × ℰ is the set of states of � and for any two states
�� = (� ′

�	, ℰ��) and �� = (� ′
�	, ℰ��), �� → �� (i.e. there

exists a transition from �� to ��) only if � ′
�	 ⇝ � ′

�	. Using
the abstract model �, a discrete planner that guarantees the
satisfaction of  while ensuring that the discrete plans are
restricted to those satisfying the reachability relations can be
automatically synthesized using the digital design synthesis
tool as described in Section II-C.

From the stutter invariant property of , the formulation
of the optimal control problem (4) and the proposition
preserving property of � ′, it is straightforward to prove the
following proposition.

Proposition 1: Let 
� = �0�1 . . . be an infinite sequence
of discrete states of � where for each natural number �,
�� → ��+1, �� = (��,  �), �� ∈ � ′ is the discrete controlled
state and  � ∈ ℰ is the discrete environment state. If

� ∣=� , then by applying a sequence of control laws,
each corresponding to the solution of (4) with � � = ��
and �� = ��+1, the infinite sequence of continuous states

 = �0�1�2 . . . satisfies .

V. RECEDING HORIZON STRATEGY

As discussed in Section II-C, automatic synthesis of finite
state automata from their LTL specifications [1] suffers from
the state explosion problem. In many applications, however,
it is not necessary to plan for the whole execution, taking into
account all the possible behaviors of the environment since
a state that is very far from the current state of the system
typically does not affect the near future plan. For example,
consider a robot motion planning problem where the robot
has to travel 100 kilometers. Under certain conditions, it may
be sufficient to only plan out an execution for 500 meters and
implement it in a receding horizon fashion, i.e., re-compute
the plan as the robot moves. In this section, we present
a sufficient condition and a receding horizon scheme that
allows the synthesis to be performed on a smaller domain;
thus, substantially reduces the number of states (or nodes)
of the automaton while still ensuring the system correctness.

We consider a subclass of Generalized Reactivity(1) for-
mulas (1): (a) let ����� be a propositional formula of variables
from � which characterizes the initial state of the system;
(b) let �� be a boolean combination of propositional formulas
of variables from � and expressions of the form �� �

� where
��� is a propositional formula of variables from � which
describes the assumptions on the transitions of environment
states; (c) let �	 be a boolean combination of propositional
formulas of variables from � and expressions of the form���	 where ��	 is a propositional formula of variables from �
which describes the constraints on the transitions of discrete
controlled states; and (d) let �� be a propositional formula
of variables from � . We assume that the corresponding

(stronger) specification for � is given by3

� = (����� ∧ □��) =⇒ (□�	 ∧ ���) (5)

where □�	 and ��� express the safety and the progress
properties of the system. Let � ′ = � ′ × ℰ be the discrete
domain of the system after applying the discretization al-
gorithm presented in Section IV. Similar to the map �	
for the controlled states defined in Section IV, we let � :
dom(� ) → � ′ be a map that sends a continuous state to a
discrete state of its equivalence class, i.e. for each �� ∈ � ′,
�−1(��) ∈ dom(� ) is the set of all the continuous states
contained in the cell labeled by �� and {�−1(��) ∣ �� ∈ � ′}
is a partition of dom(� ).

Suppose there exists a collection of disjoint subsets
�0, . . . ,�� of � ′ such that (a) �0 ∪�1 ∪ . . .∪�� = � ′,
(b) �� is satisfied for any � ∈ ∪��∈�0

�−1(��), i.e., �0

is the set of the final states, and (c) ({�0, . . . ,��},⪯��)
is a partially ordered set. By an abuse of notation, for each
� ∈ {0, . . . , !}, we let �−1(��) =

∪
��∈��

�−1(��), i.e.,
�−1(��) is the set of all the continuous states contained in
the cells that belong to the set ��. Further assume that there
exists a propositional formula Φ of variables from � and for
each � ∈ {0, . . . , !}, there exist "� ∈ {0, . . . , !} and a subset
�� of dom(�) satisfying the following conditions:
(1) ����� =⇒ Φ is a tautology, i.e., any state that satisfies

����� also satisfies Φ,
(2) �−1(��), �−1(���) ⊆ �� × dom(�), and
(3) ��� ⪯�� �� and for each � ∕= 0, ��� ≺�� ��

such that

Ψ� =
(
(� ∈ �−1(��)) ∧ Φ ∧ □��

)
=⇒ (

□�	 ∧ �(� ∈ �−1(���)) ∧ □Φ
) (6)

is realizable with the domain of � restricted to ��.
For � ∈ {0, . . . , !}, let !� be an automaton that satisfies

Ψ�. Since in the synthesis of !�, the domain of � is restricted
to��, this can substantially reduce the number of states in the
automaton, especially when the size of �� is much smaller
than the size of dom(�).
Receding Horizon Strategy: Starting from the state �0, pick
an automaton !� such that �0 ∈ �−1(��) and execute
!� until the system reaches the state � ∈ � −1(��) where
�� ≺�� ��, at which point, switch to the automaton !� .
Repeat this process until !0 is executed.

Theorem 1: Suppose for each � ∈ {0, . . . , !}, Ψ� is real-
izable. Then the proposed receding horizon strategy ensures
the correctness of the system.

Proof: Consider an arbitrary execution 
 of the system
that satisfies the formula to the left of =⇒ in (5). From
the tautology of ����� =⇒ Φ, it is easy to show that if 

starts from � ∈ �−1(��), then 
 satisfies the formula to the
left of =⇒ in (6). Let �0 ∈ dom(� ) be the initial state of
the system. First, suppose �0 ∈ �−1(�0). Then, the system
always executes !0; thus, Ψ0 ensures that 
 satisfies (5).
Next, suppose �0 ∈ �−1(��) where � ∕= 0. Then, the system

3The specification of � is obtained by adding LTL formulas of the form
�1 =⇒ ��2 to the original specification � which essentially restricts
the valid state transitions to those satisfying the reachability relations as
described in Section IV-C. Note that �� is generally not stutter invariant.



executes !� and Ψ� ensures that the safety property �	 holds
at every position of 
 up to and including position ! � at which
the system switches the automaton and Φ holds at position
!�. In addition, since Ψ� satisfies the progress property �(� ∈
�−1(���)) where ��� ≺�� ��, Ψ� ensures that eventually
the system reaches the state �� ∈ �−1(��) where �� ≺��

��. According to the receding horizon scheme, the system
switches the automaton at this state, i.e., �� is the state of
the system at position !� of 
. Since �� ∈ �−1(��) and ��
satisfies Φ, 
 satisfies the formula to the left of =⇒ in (6).
Using the previous argument, we get that Ψ� ensures that
the safety property �	 holds at every position of 
 starting
from position !� up to and including position !� at which the
system switches the automaton and Φ holds at position !� .
By repeating this proof, we get that �	 holds at every position
of 
 and due to the finiteness of the set {�0, . . . ,��} and
its partial order, eventually the automaton !0 is executed
which ensures that 
 satisfies the progress property ���.

Remark 4: The propositional formula Φ (which can be
viewed as an invariant of the system) adds a constraint on the
initial state of the system assumed by each of the automata
so that Ψ� is realizable. One way to determine Φ is to start
with Φ = True and check the realizability of the resulting
Ψ�. If for any � ∈ {0, . . . , !}, Ψ� is realizable, we are done.
Otherwise, the synthesis process provides the initial state of
the system starting from which there exists a set of moves
of the environment such that the system cannot satisfy Ψ �.
This information provides guidelines for constructing Φ.

Remark 5: The partial order ({�0, . . . ,��},⪯��) essen-
tially provides a measure of “closeness” to the goal (i.e.
the set of the final states). Since each specification Ψ� in
(6) asserts that the system eventually reaches a state that is
smaller in the partial order, it essentially ensures that each
automaton !� brings the system “closer” to the goal.

VI. EXAMPLE
We consider a point-mass omnidirectional vehicle navi-

gating a straight road while avoiding obstacles and obeying
certain traffic laws. It was shown in [22] that the nondimen-
sional equations of motion of the vehicle are given by⎡

⎣ �̈
#̈

$̈

⎤
⎦+

⎡
⎣ �̇

#̇
2��2

� $̇

⎤
⎦ =

⎡
⎣ %�

%�
%�

⎤
⎦ , (7)

with the following constraints on the control efforts:

∀�, %2�(�) + %2�(�) ≤
(
3− ∣%�(�)∣

2

)2

and ∣%�(�)∣ ≤ 3. (8)

Conservatively, we can set ∣%�(�)∣ ≤
√
0.5, ∣%�(�)∣ ≤

√
0.5

and ∣%�(�)∣ ≤ 1 so that the constraints (8) are decoupled.
In this section, we are only interested in the translational

(� and #) components of the vehicle state. Discretizing the
dynamics (7) with time step 0.1, we obtain the following
discrete-time linear time-invariant state space model[

&[�+ 1]
�� [�+ 1]

]
=

[
1 0.0952
0 0.9048

] [
&[�]
��[�]

]
+

[
0.0048
0.0952

]
%� (9)

where & represents either � or # and �� represents the rate
of change in &. Let �� be the domain of the vehicle state

projected onto the (&, ��) coordinates. We restrict the domain
�� to [&'��, &'(�] × [−1, 1] and partition �� as �� =∪
�∈{����+1,...,����} ��,� where ��,� = [� − 1, �] × [−1, 1]

as shown in Figure 2. Throughout the section, we call this
partition the original partition of the domain �� .

Fig. 2. The original partition of the domain ��

We consider a road with 2 lanes, each of width 1, so we
set #'�� = 0 and #'(� = 2. Since the vehicle dynamics
are translationally invariant, without loss of generality we set
�'�� = 0 and �'(� = ) where ) is the length of the road.

For each � ∈ {1, . . . , )} and � ∈ {1, 2}, we define
a Boolean variable *�,� that is assigned the value True
if and only if an obstacle is detected at some position
(��, #�) ∈ [�−1, �]×[�−1, �]. The state of the system is there-
fore a tuple (�, ��, #, ��, *1,1, *1,2, . . . , *�,1, *�,2) where
(�, ��, #, ��) ∈ [0, )]× [−1, 1]× [0, 2]× [−1, 1] is the vehicle
state or the controlled state and (*1,1, *1,2, . . . , *�,2) ∈
{0, 1}2� is the environment state.

A. System Specification
We assume that at the initial configuration, the vehicle is

at least +��	 away from any obstacle and that the vehicle
starts in the right lane. That is, ����� in (5) is defined as: for
any � ∈ {1, . . . , )},(

� ∈
�+����∪

�=�−����
��,� =⇒ (¬*�,1 ∧ ¬*�,2)

)
∧ # ∈ ��,1

(10)
The following properties are assumed for the environment.

1) An obstacle is detected before the vehicle gets too close
to it. That is, there is a lower bound +����� ≥ 0 on the
distance from the vehicle for which obstacle is allowed
to instantly pop up. An LTL formula corresponding
to this assumption is a conjunction of the following
formula: for all � ∈ {1, . . . , )} and � ∈ {1, 2},

□

⎛
⎝
⎛
⎝� ∈

�+������∪
�=�−������

��,� ∧ ¬*�,�
⎞
⎠ =⇒ □(¬*�,�)

⎞
⎠

(11)
2) Sensing range is limited. That is, the vehicle cannot

detect an obstacle that is away from it farther than
+	� > +����� ≥ 0. An LTL formula corresponding
to this assumption is a conjunction of the following
formula: for all � ∈ {1, . . . , )},

□

⎛
⎝� ∈ ��,� =⇒

⋀
�>�+��	

(¬*�,1 ∧ ¬*�,2)
⎞
⎠ (12)

3) The road is not blocked. That is, for any � ∈ {1, . . . , )},
□ (¬*�,1 ∨ ¬*�,2) (13)



4) To make sure that the stay-in-lane requirement (see
below) is achievable, we assume that an obstacle on
the right lane does not disappear while the vehicle is in
its vicinity. That is, for any � ∈ {1, . . . , )},

□

⎛
⎝
⎛
⎝� ∈

�+1∪
�=�−1

��,� ∧ *�,1

⎞
⎠ =⇒ □(*�,1)

⎞
⎠
(14)

These assumptions can be relaxed so that they have the form
(5) by replacing the inner □ in (11) and (14) with �.

Next, we define the desired safety property, □�	, as the
conjunction of the following properties:

1) No collision, i.e., for any � ∈ {1, . . . , )} and � ∈ {1, 2},
□(*�,� =⇒ ¬(� ∈ ��,� ∧ # ∈ ��,�)) (15)

2) The vehicle stays in the right lane unless there is
an obstacle blocking the lane. That is, for any � ∈
{1, . . . , )},
□((¬*�,1 ∧ � ∈ ��,�) =⇒ (# ∈ ��,1)) (16)

Finally, we define �� = (� ∈ ��,�), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization
Since the dynamics and the constraints on the control

efforts for the � and # components of the vehicle state are
decoupled, we apply the discretization algorithm presented
in Section IV for the � and # components separately for
the sake of computational efficiency.4 Since the vehicle
dynamics (7) are translationally invariant, we can use similar
partitions for all ��,�. The discretization algorithm with
horizon length � = 10 and Volmin = 0.1 yields a partition
with 11 cells {�1

�,�, �
2
�,�, . . . , �

11
�,�} for each ��,� as shown

in Fig. 3. For each � ∈ {&'�� + 1, . . . , &'(�} and � ∈
{1, . . . , 11}, we let $��,� be the state label of cell � �

�,� and
let $�,� = {$1�,�, . . . , $11�,�}. A discrete state is therefore a
tuple (��, ��, *1,1, . . . , *�,2) where (��, ��) ∈ $�,�×$�,� is
the discrete controlled state. Using MPT [4], the reachability
between discrete controlled states can be determined and a
controller associated with each reachable pair of them can be
generated such that the resulting continuous execution imple-
ments the discrete transition between them. The specification
of the resulting finite transition system can then be derived
as discussed in Section IV-C.

i−1 i
−1

0

1

z

v z

Fig. 3. The partition of each cell ��,� in the original partition of
the domain ��

4Before performing the discretization, we partition each ��,� into(
�+

�,� ∪ �−
�,�

)
where �+

�,� = [� − 1, �] × [0, 1] and �−
�,� = [� − 1, �] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation
Based on the new partition of the vehicle state space,

there are the total of 242 × ) discrete vehicle states and
22×� discrete environment states. Thus, in the worst case,
the resulting automaton may have as many as 242×)×22×�

nodes. To avoid state explosion, we apply the receding
horizon strategy proposed in Section V. The partial order
structure is defined as�� = {(��, ��, *1,1, . . . , *�,2) ∣ �� ∈
$�,�−�} and �� ≺�� �� for any � < �.

Next, we follow the scheme in Remark 4 to find an
invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ� as defined in (6) is realizable, a propositional formula to
exclude the initial states starting from which there exists a
set of moves of the environment such that the system cannot
satisfy Ψ�. A close examination of the resulting Φ reveals
that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property ���, we need to
assume that �� ∕∈ %������	 and �� ∕∈ &������	 where
'notrans is defined as: for any �� ∈ 'notrans , � ∈
{&'��+1, . . . , &'(�} and � ∈ {1, . . . , 11}, �� ∕⇝ $��,�
and ' represent either % or & .

2) To ensure no collision, the vehicle cannot collide with
an obstacle at the initial state.

3) Suppose �� ∈ $�,�. To ensure no collision, if �� can
only transition to � ′

� ∈ $�,1, then either *�,1 or *�+1,1 is
False . Similarly, if �� can only transition to � ′

� ∈ $�,2,
then either *�,2 or *�+1,2 is False . Similar reasoning
can be derived for the case where �� ∈ $�,� such that
it can only transition to � ′

� ∈ $�,�+1 and for the case
where it can only transition to � ′

� ∈ $�,�.
4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking
the right lane at the initial state. In addition, the vehicle
is never in the state (��, ��) ∈ $�,� × $�,1 which can
only transition to (� ′

�, �
′
�) ∈ $�,� × $�,2.

5) Suppose �� ∈ $�,� and *�+1,1 is False . To ensure that
the vehicle does not go to the left lane when the right
lane is not blocked, it is not the case that �� ∈ $�,1
which can only transition to � ′

� ∈ ��,2. In addition, it
is not the case that �� can only transition to � ′

� ∈ ��,�+1

and �� ∈ $�,2 which can only transition to � ′
� ∈ $�,2.

With +����� = 1 and the horizon length 2 (i.e. " � = �+2),
the specification (6) is realizable. In addition, if we let +��	
be greater than 1 and restrict the initial state of the system
such that �� ∕∈ %������	 and �� ∕∈ &������	, we get that
����� =⇒ Φ is a tautology.
D. Results

The synthesis was performed on a Pentium 4, 3.4 GHz
computer with 4 Gb of memory. The computation time was
1230 seconds. The resulting automaton contains 2845 nodes.
During the synthesis process, 96796 nodes were generated.
Based on the authors experience, this particular computer
crashes when approximately 97500 nodes are generated.
Thus, this problem with horizon length 2 is as large as
what the computer can handle. This means that without the
receding horizon strategy, problems with the road of length
greater than 3 cannot be solved.



A simulation result with the road length of 30 is shown in
Fig. 4. The polygons drawn in red are obstacles which are
not known a priori. Notice that when there is no obstacle
blocking the lane, the vehicle tries to stay as close to the
lane boundary (# = 1) as possible. This is expected since to
be able to avoid a pop up obstacle, due to the constraint on
the admissible control inputs, the vehicle needs to stay close
to the lane boundary to be able to change lane. To force the
vehicle to stay close to the center of the lane, we need a
finer partition of the road and extra LTL formula to ensure
this property needs to be added to the system specification.
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Fig. 4. Simulation result. The solid line is the trajectory of the
vehicle. The polygons are obstacles discovered during the execution
when the vehicle gets close enough to them.

VII. CONCLUSIONS AND FUTURE WORK
This paper illustrated how off-the-shelf tools from com-

puter science and control can be integrated to allow au-
tomatic synthesis of complex dynamical systems that are
guaranteed, by construction, to satisfy the desired properties
expressed in temporal logic even in the presence of adversary
(typically arising from changes in the environments). A
receding horizon scheme for executing finite state automata
was described that addresses the main limitation of the
synthesis tool, the state explosion problem, assuming that
the system has a certain partial order structure. The example
showed that without the receding horizon scheme, the synthe-
sis problem can be extremely computationally challenging.

Although the adversarial nature of the environment has
been incorporated in the synthesis, the effects of disturbances
and modeling errors have not yet been studied. To increase
the robustness of the system, we plan to impose more
conditions on the multi-parametric programming problem so
that the continuous control law can be executed in a closed
loop manner. In addition, the system specification needs to be
modified to allow the possibility that the system may deviate
from the plan due to disturbances and modeling errors.

Automatic or semi-automatic computation of an invariant
Φ in the receding horizon scheme based on the information
provided by the synthesis tool is also of interest. This
direction sounds promising since, as described in the paper,
Φ can be constructed by iteratively adding, until Ψ � is
realizable, a propositional formula to exclude the initial states
of the system starting from which there exists a set of moves
of the environment such that the system cannot satisfy Ψ �.
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