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Abstract— We propose a consensus protocol to solve the
assignment problem in a completely distributed manner without
any central management or global knowledge. Our protocol is
based on the auction algorithm and ensures convergence to an
assignment that is within nε of being optimal where n is the
number of agents and ε is a design parameter. We then apply
the proposed protocol to the mobile sensor dispatch problem to
let each mobile sensor determines, in a completely distributed
manner, the failed static sensor it should recover so that the
total distance traveled by all the mobile sensors is minimized.

I. INTRODUCTION

The assignment problem, also regarded as the bipartite
Maximum Weighted Matching (MWM) problem, is a fun-
damental problem in combinatorial optimization [1] and
provides several applications, especially in the areas of multi-
agent coordination, distributed computing and distributed
manufacturing. In particular, it has been shown that optimal
task and resource allocation can be reduced to an instance of
the assignment problem [2]. Another important application
is sensor dispatch, an emerging problem in wireless sensor
networks where a subset of mobile sensors need to decide
how to move in order to optimize certain global objectives
while maintaining the coverage ability [3], [4].

Roughly speaking, the assignment problem is the problem
of assigning n objects to n agents such that the resulting
assignment is optimal according to some predefined cost or
benefit. The remarkable Kuhn’s Hungarian method [5] solves
the assignment problem in polynomial time and is based
on a primal-dual method. A price for each object and an
(incomplete) assignment of agents and objects are maintained
throughout the execution. Starting with an empty assignment
and a zero price for each object, in each iteration, the algo-
rithm either adds more assignments or raises object prices to
maintain the complementary slackness (CS) condition, which
essentially asserts that at an optimum, each agent is assigned
to the most “profitable” object. The validity of the algorithm
relies on a well-known optimality condition which states that
an assignment-price pair (x, p) solves the primal and dual
problems, respectively, if and only if x is complete (i.e.,
each of the agents is assigned to an object) and satisfies the
CS condition together with p.
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The classical version of the Hungarian method is serial and
centralized in nature. Bertsekas proposed the auction algo-
rithm that solves the assignment problem in an asynchronous,
parallelizable manner [6]. The algorithm can be interpreted
as a Jacobi-like relaxation for solving a dual problem and
terminates with a sub-optimal solution in polynomial time.
It uses the notion of independent single node price changes
and ε-complementary slackness (ε-CS), a relaxation of the CS
condition by allowing agents to be assigned to objects that
come within ε of being optimal. As will be further discussed
in Section III-A, although the algorithm can be implemented
in a distributed manner, it requires certain common knowl-
edge among agents and some central management to ensure
that all agents agree on the resulting assignment.

Another approach that efficiently solves the assignment
problem in a distributed manner was proposed by Cheng
et. al. [7]. The algorithm is based on max-product message
passing update rules and does not explicitly require common
knowledge among agents or central management. However, it
requires that each agent can communicate with all the other
agents. This effectively implies that global knowledge can
be obtained by each agent. In addition, convergence is only
guaranteed when the optimal solution is unique.

In this paper, we extend the auction algorithm [6] by
utilizing the consensus-based scheme to eliminate the need
for common knowledge and central management. A similar
approach has been proposed by Choi et al. [8] which guaran-
tees convergence to an assignment whose benefit is at least
half of the benefit of an optimal assignment. In our approach,
however, an arbitrary degree of optimality can be achieved
as it can be regarded as a design parameter that also affects
the convergence rate. Specifically, for any given ε > 0, our
approach converges to a solution that is within nε of being
optimal where n is the number of agents and the number of
operations sufficient to guarantee convergence is inversely
proportional to ε. We then apply the proposed technique to
solve the sensor dispatch problem in a distributed manner.
To the authors’ knowledge, existing approaches either solve
the sensor dispatch problem in a centralized manner [3] or
require that each of the mobile sensors can directly talk to
all the other mobile sensors in the network [4]. In other
words, reference [4] requires that the communication graph
is complete. In contrast, our approach only requires that the
communication graph is strongly connected.

The remainder of the paper is organized as follows: In
Section II, we formally describe the assignment problem
for multi-agent systems. In Section III, we briefly present
the auction algorithm and results on consensus problems. In



Sections IV and V, we present a consensus approach to solve
the assignment problem based on the auction algorithm and
provide the proof of optimality and convergence. Finally, in
Section VI, we apply the proposed auction-based consensus
protocol to the sensor dispatch problem.

II. THE ASSIGNMENT PROBLEM

Consider a problem of matching n agents, a1, . . . , an, with
n objects, b1, . . . , bn. Each agent ai has an associated set
Ni ⊆ {1, . . . , n} of indices of its neighbors with whom it
may communicate. Let G be a directed graph that represents
the interconnection of the agents. Formally, G consists of a
vertex set V(G) = {v1, . . . , vn} and an edge set E(G) where
(vi, vj) ∈ E(G) if j ∈ Ni.

Let Q ∈ Rn×n be an objective matrix whose (i, j) entry,
Qi,j , represents a benefit of associating agent ai with object
bj . An assignment x ∈ Nn is such that the ith element of x,
xi, represents the index of agent associated with object bi.
For an unassigned object bi, we let xi = 0. We consider the
case where each agent can only be associated with at most
one object. Formally, xi 6= xj for any i 6= j and xi 6= 0. Let
X be the set of all the one-to-one assignments so X contains
all the permutations of {1, . . . , n}. An optimal assignment
x∗ maximizes the total benefit. Formally,

L∗ =
n∑
i=1

Qx∗i ,i ≥
n∑
i=1

Qxi,i,∀x ∈ X. (1)

Assuming that each agent can only exchange information
with its neighbors, we want to find a protocol for each agent
to determine its associated object such that the resulting
assignment is one-to-one and the total benefit is near optimal.

III. PRELIMINARIES

A. The Auction Algorithm

The assignment problem can be formulated as the follow-
ing integer linear programming (ILP) problem:

max
F∈Nn×n

n∑
i=1

n∑
j=1

Qi,jFi,j

s.t.
n∑
j=1

Fi,j = 1,
n∑
j=1

Fj,i = 1 ∀i ∈ {1, . . . , n}

Fi,j ≥ 0, ∀i, j ∈ {1, . . . , n}
(2)

where F is an n× n permutation matrix whose (i, j) entry,
Fi,j , is an indicator variable that is equal to 1 if agent ai is
associated with object bj and is equal to 0 otherwise.

The dual problem to the assignment problem (2) is given
by (see, for example, [6])

min
p1,...,pn,π1,...,πn

n∑
j=1

pj +
n∑
i=1

πi

s.t. pj + πi ≥ Qi,j ,∀i, j ∈ {1, . . . , n}
(3)

where the dual variables pi and πi can be regarded as
the price of object bi and the profit margin of agent
ai, respectively. Since at the optimum, we have πi =
maxj∈{1,...,n}{Qi,j − pj}, πi can be eliminated and the

problem in (3) can be reduced to the following equivalent
unconstrained problem:

min
p1,...,pn

n∑
j=1

pj +
n∑
i=1

max
j∈{1,...,n}

{Qi,j − pj}. (4)

The auction algorithm uses the notion of the ε-CS con-
dition to solve the dual assignment problem in (4). The ε-
CS condition asserts that for any j ∈ {1, . . . , n} such that
xj 6= 0,

Qxj ,j − pj ≥ max
k
{Qxj ,k − pk} − ε. (5)

The algorithm maintains an assignment x and a price
vector p. Each iteration consists of two phases—the bidding
phase and the assignment phase. In the bidding phase, each
unassigned agent ai computes the bid for the object with
index j∗ , arg maxj{Qi,j − pj} given by

bid i,j∗ = pj∗ + (Qi,j∗ − pj∗)− wi,j∗ + ε
= Qi,j∗ − wi,j∗ + ε

(6)

where wi,j∗ = maxj 6=j∗{Qi,j − pj}. That is, agent ai
increases the price of the most profitable object bj∗ by ε
plus the difference between its highest profit Qi,j∗−pj∗ and
its second highest profit wi,j∗ . Hence, if ai wins the bid, it
will get the object bj∗ which is within ε of begin optimal.

Next, in the assignment phase, each object bj that received
a bid in the bidding phase increases its price pj to the highest
bid and sets xj = i∗ where i∗ is the index of some highest
bidder of bj . The ε-CS condition is preserved throughout the
execution.

It can be shown [6] that the algorithm terminates with
a solution within nε of being optimal in O

(n2 max{|Qi,j |}
ε

)
operations. Thus, if all the Qi,j’s are integer and ε is chosen
to be less than 1/n, the auction algorithm terminates with
an optimal solution. Although the algorithm can be straight-
forwardly implemented in a distributed manner, it requires
common knowledge of the price vector p and assignment
x among agents. Moreover, communication is not among
agents as it requires some “central” management associated
with each object to update its price and assignment based on
the received bids.

B. Solving Consensus Problems

The problems of average-consensus, max-consensus and
min-consensus have been studied extensively in the field of
control and distributed computing. A recent review can be
found, for example, in [9]. The consensus protocols and the
necessary and sufficient conditions on the communication
graph G that guarantee convergence in the presence of
communication time-delays, packet drops, channel noises,
link failures and quantization errors have been studied by
many researchers [10], [11], [12], [13], [14], [15], [16],
[17]. However, the problems of interest are typically limited
to the classical average-consensus or max-consensus. In
particular, the following max-consensus protocol has been
used for determining the max-leader (i.e., the agent with the
maximum initial value) [10]:

xi[t+ 1] = maxj∈Ni∪{i} x
j [t]

f i[t+ 1] =

{
f i[t] if xi[t+ 1] > xi[t]
f
i
[t] otherwise

(7)



where xi represents the value of agent ai, the Boolean
variable f i ∈ {0, 1} is the max-flag of agent ai that indicates
whether agent ai thinks it is the max-leader and f

i
is the

negation of f i. It was shown in [10] that starting with
f i[0] = 1,∀i and using protocol (7), the value of each agent
converges to the value of the max-leader and the max-flag
of all the agents except the max-leader converges to zero
in O(n) time, assuming that the communication graph G is
strongly connected.

IV. AUCTION-BASED CONSENSUS PROTOCOL
Suppose each agent ai maintains its local knowledge of

the price vector pi ∈ Rn and assignment xi ∈ Nn, both
initialized to zero. For each i, j ∈ {1, . . . , n}, we let pij and
xij be the jth element of pi and xi, respectively. We want
to develop a consensus protocol to ensure that eventually, all
the agents agree on a near optimal, one-to-one assignment.
Formally, there exist an x ∈ X and a time t̂ ∈ N such that
x = xi[t],∀i ∈ {1, . . . , n}, t ≥ t̂ and xi 6= xj 6= 0 for any
i 6= j. In addition, for a given δ > 0,

∑n
j=1Qxj ,j ≥ L∗ − δ

where L∗ is the optimal benefit given in (1).
For each i, j ∈ {1, . . . , n}, we define auxiliary variables

βij and αij where βij is the highest bid and αij is the smallest
index of the highest bidders of object bj according to the
local knowledge of agent ai and its neighbors. Formally,
βij , maxk∈Ni∪{i} p

k
j and αij , mink∈Ni∪{i}{xkj | pkj =

βij}. Let αi = [αi1, . . . , α
i
n]
T and βi = [βi1, . . . , β

i
n]
T . We

also define the following shorthand notations for any vector
α and scalar m: (a) α{j ← m} represents the vector α whose
jth element is replaced by m, and (b) m ∈ α if there exists
an element of α whose value equals m.

Fix ε > 0. We propose the following auction-based
consensus protocol:

pi[t+ 1] =
{
βi[t] if i ∈ αi[t]
βi[t]{j∗ ← Qi,j∗ − wi,j∗ + ε} otherwise

xi[t+ 1] =
{
αi[t] if i ∈ αi[t]
αi[t]{j∗ ← i} otherwise

(8)
where j∗ = min

{
arg maxj{Qi,j − βij [t]}

}
and wi,j∗ =

maxj 6=j∗{Qi,j − βij [t]}.
Note that Qi,j∗−wi,j∗+ε = βij∗+(Qi,j∗−βij∗)−wi,j∗+ε.

Thus, essentially, each agent first updates its knowledge of
the highest bid of each object (i.e., the price vector) and the
smallest index of the highest bidders of each object (i.e.,
the assignment) based on the local knowledge of itself and
its neighbors. Then, based on the updated price vector and
assignment, if it is not associated with any object, it will
increase the bid price of its most profitable object bj∗ by ε
plus the difference between its highest profit Qi,j∗−βij∗ and
its second highest profit (wi,j∗ ) in order to make itself the
highest bidder of object bj∗ while still keeping bj∗ an object
that is within ε of being most profitable.

Remark 1: For each i, j ∈ {1, . . . , n}, we define αij to be
the smallest index of the highest bidders to resolve ties when
there are multiple highest bidders for object bj .

Remark 2: Based on protocol (8), the objective matrix Q
only needs to be known “locally”. Specifically, each agent
ai only needs to know Qi,j ,∀j ∈ {1, . . . , n}.

Remark 3: From the definitions of j∗ and wi,j∗ , we see
that Qi,j∗ − βij∗ [t] ≥ wi,j∗ . Hence, Qi,j∗ −wi,j∗ = βij∗ [t] +
(Qi,j∗ −βij∗ [t])−wi,j∗ ≥ βij∗ [t]. Protocol (8) thus increases
pij∗ by at least ε when i 6∈ αi.

V. ANALYSIS
In this section, we show that protocol (8) converges in

finite time to a near optimal assignment. First, we use the
notion of ε-CS to prove the near-optimality of the resulting
assignment assuming that protocol (8) converges. Then, we
show that protocol (8) actually converges.

The following lemma shows that the ε-CS condition is
satisfied throughout the execution.

Lemma 1: For any i ∈ {1, . . . , n} and t ∈ N, the
assignment-price pair (xi[t], pi[t]) of agent ai satisfies the
ε-CS condition (5).

Proof: Since we assume that each agent starts with an
empty assignment (i.e., xi[0] is a zero vector), it is obvious
that the ε-CS condition is satisfied at the initial state. We
want to show that protocol (8) preserves ε-CS throughout
the execution. Consider an arbitrary agent ai and assume
that for all k ∈ Ni∪{i}, the assignment-price pair at time t,
(xk[t], pk[t]), satisfies the ε-CS condition. We want to show
that (xi[t+ 1], pi[t+ 1]) also satisfies the ε-CS condition.

First, we will show that the pair (αi[t], βi[t]) satisfies the
ε-CS condition. Pick an arbitrary object bj and fix j for
the remainder of the paragraph. If αij [t] = 0, then the ε-CS
condition is automatically satisfied. Thus, we only have to
consider the case where αij [t] 6= 0. Let κ be an element in
the set {k ∈ Ni ∪ {i} | pkj [t] = βij [t] and xkj [t] = αij [t]} and
let γ = αij [t] = xκj [t]. By assumption, the assignment-price
pair (xκ[t], pκ[t]) satisfies the ε-CS condition which implies
that

Qγ,j − pκj [t] ≥ max
l
{Qγ,l − pκl [t]} − ε. (9)

In addition, from the definition of βi, it is obvious that
βil [t] ≥ pκl [t],∀l ∈ {1, . . . , n} and from the definition of κ,
βij [t] = pκj [t]. Thus, maxl{Qγ,l − pκl [t]} ≥ maxl{Qγ,l −
βil [t]}. Combining this with (9), we get Qγ,j − βij [t] =
Qγ,j − pκj [t] ≥ maxl{Qγ,l − βil [t]} − ε.

Now we will show that protocol (8) preserves ε-CS.
Consider an arbitrary agent ai. The case where i ∈ αi[t] is
obvious since by protocol (8), xi[t+1] = αi[t] and pi[t+1] =
βi[t] and as previously shown, the pair (αi[t], βi[t]) satisfies
the ε-CS condition. So we only have to consider the case
where i 6∈ αi[t]. Let j∗ = min

{
arg maxj{Qi,j − βij [t]}

}
and wi,j∗ = maxj 6=j∗{Qi,j − βij [t]}. From (8), we get

max
j∈{1,...,n}

{Qi,j − pij [t+ 1]}

= max{Qi,j∗ − pij∗ [t+ 1],max
j 6=j∗
{Qi,j − pij [t+ 1]}}

≤ max{wi,j∗ − ε, wi,j∗} = wi,j∗ .

Thus, we obtain

Qi,j∗−pij∗ [t+1] = wi,j∗−ε ≥ max
j∈{1,...,n}

{Qi,j−pij [t+1]}−ε.

From protocol (8) and Remark 3, it is obvious that pij [t+
1] = βij [t],∀j 6= j∗ and pij∗ [t + 1] > βij∗ [t]. Consider an
arbitrary object bj where j 6= j∗ and αij [t] 6= 0. Let γ =



αij [t] = xij [t + 1]. As proved earlier, the assignment-price
pair (αi[t], βi[t]) satisfies the ε-CS condition. Thus, we get

max
l
{Qγ,l − pil[t+ 1]} − ε ≤ max

l
{Qγ,l − βil [t]} − ε

≤ Qγ,j − βij [t] = Qγ,j − pij [t+ 1].

From the ε-CS condition, the following lemma shows that
protocol (8) ensures a near-optimal assignment, assuming
that it converges.

Lemma 2: Suppose that protocol (8) converges to a one-
to-one assignment x. Then the final assignment is within nε
of being optimal. Formally,

∑n
j=1Qxj ,j ≥ L∗ − nε where

L∗ is the optimal benefit given in (1).
Proof: Let x and p be the final assignment and object

price vector, respectively. Then by summing the inequality
(5) over j, we get

n∑
j=1

Qxj ,j ≥
n∑
j=1

(pj) +
n∑
j=1

(max
k
{Qxj ,k − pk})− nε

=
n∑
j=1

(pj) +
n∑
i=1

(
max
j
{Qi,j − pj}

)
− nε

The desired result follows from the duality of (2) and (4).
Next, we will prove that protocol (8) actually converges

to a one-to-one assignment. For the purposes of the analysis,
we define the global price vector p = [p1, . . . , pn]T and the
global assignment x = [x1, . . . , xn]T where for each j ∈
{1, . . . , n}, pj and xj are the globally highest bid and the
smallest index of the globally highest bidders, respectively, of
object bj . Formally, pj and xj are defined as pj , maxk pkj
and xj , mink{xkj | pkj = pj}.

The next five lemmas provide the important properties of
the global price vector p and the global assignment x.

Lemma 3: For any given time t ∈ N and any i, j, k ∈
{1, . . . , n}, if xkj [t] = i, then pkj [t] ≤ pij [t].

Proof: Consider arbitrary agents ai and ak, object bj
and time t ∈ N. Suppose xkj [t] = i. Then according to
protocol (8), there exists some time t̂ ≤ t such that xij [t̂] = i

and pij [t̂] = pkj [t]. (xkj [t] = i means that according to the
knowledge of agent ak, ai is a bidder of object bj with the
highest bid price pkj [t]. Thus, at some time t̂ ≤ t, agent ai
actually put a bid for object bj with the bid price pij [t̂] =
pkj [t].) From (8) and Remark 3, it is obvious that pij cannot
decrease with time. Thus, we obtain pij [t] ≥ pij [t̂] = pkj [t].

Lemma 4: For any given time t ∈ N and any j ∈
{1, . . . , n}, if xj [t] = i 6= 0, then xij [t] = αij [t] = i and
pij [t] ≥ pkj [t],∀k ∈ {1, . . . , n}.

Proof: Consider arbitrary t ∈ N and j ∈ {1, . . . , n}.
Suppose xj [t] = i 6= 0. From the definition of xj , there exists
k ∈ {1, . . . , n} such that xkj [t] = i and pkj [t] = pj [t] =
maxl plj [t]. Applying Lemma 3, we get pij [t] ≥ pkj [t] =
maxl plj [t]. But since pij [t] ≤ maxl plj [t], it must be the case
that pij [t] = pkj [t] = maxl plj [t]. Furthermore, since xkj [t] = i,
according to protocol (8), there exists some time t̂ ≤ t such
that xij [t̂] = i and pij [t̂] = pkj [t] = pij [t]. From Remark 3,

this implies that for any t̃ ∈ [t̂, t− 1], pij [t̃+ 1] = pij [t̃] and
therefore xij [t̃ + 1] ≤ xij [t̃]. (Because the highest bid stays
the same, the smallest index of the highest bidders cannot
increase.) In particular,

xij [t] ≤ xij [t̂]. (10)

But from the definition of xj , i = min{xlj [t] | plj [t] =
maxm pmj [t] = pij [t]}. Combining this with (10), we get

i = xij [t̂] ≥ xij [t]
≥ min{xlj [t] | l ∈ Ni ∪ {i}, plj [t] = pij [t] = max

m
pmj [t]}

= αij [t] ≥ min{xlj [t] | plj [t] = pij [t]} = i.

Since the chain of inequalities above can be satisfied only if
all the inequalities are equalities, we obtain the desired result
xij [t] = αij [t] = i.

Lemma 5: At any given time t ∈ N, each agent is
associated with at most one object according to the global
assignment x[t]. Formally, xj [t] 6= xk[t] for any j 6= k such
that xj [t] 6= 0.

Proof: Suppose, for the sake of contradiction, that at
some time t ∈ N, there exist j and k such that xj [t] =
xk[t] = i 6= 0, i.e., agent ai is assigned to both objects bj
and bk. From protocol (8), there must exist two different
times t1, t2 ≤ t when agent ai assigned itself to object bj
and object bk, respectively, This effectively implies that i 6∈
αi[t1], j = min{arg maxlQi,l − βil [t1]}, i 6∈ αi[t2] and
k = min{arg maxlQi,l−βil [t2]}. Without loss of generality,
we assume t1 < t2. Following the proof of Lemma 4, we
can show that xij [t̃] = i,∀t̃ ∈ [t1, t] and i ∈ αij [t2]. However,
this contradicts the previous argument that i 6∈ αi[t2].

Lemma 6: Once a global object price becomes positive,
the object is assigned (in the global sense) and remains as-
signed throughout the remainder of the execution. Formally,
for any j ∈ {1, . . . , n}, if there exists t ∈ N such that
pj [t] > 0, then xj [t̂] 6= 0,∀t̂ ≥ t.

Proof: From protocol (8), it can be easily shown that
for any i, j ∈ {1, . . . , n}, if pij > 0, then xij 6= 0. The
result can therefore be straightforwardly obtained from the
definition of pj and xj .

Lemma 7: pj [t] is bounded for all time t ∈ N.
Proof: From protocol (8) and the definition of the

global price vector p, it is obvious that for the global price
pj of object bj to increase, there must exist an agent ai
where i 6∈ αi and j = min

{
arg maxk{Qi,k − βik}

}
.

Suppose, to reach a contradiction, that there exists a subset
J∞ ⊆ {1, . . . , n} such that for each j ∈ J∞, pj →∞. Since
each agent only updates the price of the most “profitable”
object, this implies that J∞ = {1, . . . , n} and for each
i ∈ {1, . . . , n}, maxk{Qi,k − βik} → −∞. Furthermore,
since for any j ∈ J∞, pj →∞, there exists a time t where
pj [t] > 0. Thus, from Lemma 6, xj [t̂] 6= 0,∀j ∈ J∞, t̂ ≥ t.
That is, after time t, each of the objects will be assigned to
some agent. However, since some agent ai must update the
price pj infinitely often, this means that at infinitely many
instances of time, i 6∈ αi and by Lemma 4, i 6∈ x. Combining
these arguments and using Lemma 5, we can conclude that
the number of agents is strictly greater than the cardinality



of J∞ but this contradicts the assumption that there is an
equal number of agents and objects.

Using the boundedness of the global price vector p and
the result on max-consensus problem, the following lemma
proves the convergence of protocol (8).

Lemma 8: If G is a strongly connected digraph, then pro-
tocol (8) converges in finite time to a one-to-one assignment.

Proof: Since the global price vector p is bounded (cf.
Lemma 7), from Remark 3, eventually, i ∈ αi for all i ∈
{1, . . . , n}. Thus, each agent ai essentially updates its local
price vector pi and assignment xi using the max-consensus
protocol (7). The result thus follows from the result on max-
consensus problem [10] and Lemma 5. (Each element of xi

can be regarded as the index of max-leader in [10].)
Combining Lemma 2 and Lemma 8, we obtain the desired

convergence and near-optimality of protocol (8) as formally
stated in the following theorem.

Theorem 1: If G is a strongly connected digraph, then
protocol (8) converges in finite time to a one-to-one as-
signment x that is within nε of being optimal. Formally,∑n
j=1Qxj ,j ≥ L∗ − nε where L∗ is the optimal benefit

given in (1).
Remark 4: It can be easily shown that Lemmas 1–7 hold

even in the presence of arbitrary bounded communication
time delays. Since the max-consensus protocol is robust with
respect to arbitrary bounded communication time delays, it
can be shown that protocol (8) is also robust with respect to
arbitrary bounded communication time delays.

Remark 5: Since the proof of the boundedness of the
global price vector (Lemma 7) does not include any assump-
tion on graph topology, we can apply the result on max-
consensus problem [10] to show that protocol (8) is robust
with respect to changing communication topology.

Remark 6: The proof of Lemma 7 can be modified to
handle a more general problem where each agent can be
assigned to only a subset of objects (see, e.g., [6] for this
more general proof). Thus, protocol (8) can be applied to the
problem where each agent can be assigned to only a subset
of objects, provided that a valid complete assignment exists.

VI. EXAMPLE
In this section, we show how the proposed auction-based

consensus protocol (8) can be applied to sensor dispatch
in order to optimize deployment cost without any central
control or common knowledge among mobile sensors.

Consider a sensing field with static sensors collecting
information from the environment. Some of these static
sensors may break down; thus, they need to be recovered
by the redundant mobile sensors to maintain the coverage.
We assume that each of the mobile sensors can communicate
with some subset of other mobile sensors. Furthermore, we
consider the case where the number of mobile sensors is
exactly the same as the number of failed static sensors.
This is not a very restrictive assumption since if the number
of failed static sensors is less than the number of mobile
sensors, we can add some dummy failed sensors at arbitrary
positions very far from each of the mobile sensors to make

the numbers equal without affecting the result. If the number
of failed static sensors is more than the number of mobile
sensors, it can be shown that protocol (8) still works but some
of the failed static sensors will not be recovered by any of
the mobile sensors. We will apply protocol (8) to determine
which failed static sensor should be covered by each of the
mobile sensors so that the sum of the distances travelled by
the mobile sensors is minimized.

The mobile sensors and the failed static sensors can be
regarded as the agents and the objects, respectively, in the
assignment problem. Let n be the number of failed static
sensors (which is the same as the number of mobile sensors).
For each i, j ∈ {1, . . . , n}, we let the benefit Qi,j of
associating a mobile sensor ai with a failed static sensor
bj be the negative of the distance from ai to bj . Note that
based on Remark 2, each mobile sensor only needs to know
its distance to each of the failed static sensors.

We consider the case where n = 15 and the initial
positions of the mobile and static sensors are as shown in
Figure VI. It can be shown that the minimum total distance
that the mobile sensors need to travel to cover all the failed
static sensors is 1348.90 meters.
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Fig. 1. Sensor dispatch problem. The double circles are the mobile sensors.
The dotted (black) circles are the coverage areas of the static sensors. The
solid (red) circles are the coverage areas of the failed static sensors.

G ε # operations Sum of distances Difference
required for traveled by from optimal
convergence mobile sensors distance

complete 1 102 1348.90 0
complete 5 60 1348.90 0
complete 50 22 1444.93 7.12%
complete 100 14 1438.84 6.67%

cycle 1 682 1348.90 0
cycle 5 442 1350.25 0.10%
cycle 50 92 1367.70 1.39%
cycle 100 94 1437.06 6.54%

TABLE I
CONVERGENCE RATES AND TOTAL DISTANCES TRAVELLED BY THE

MOBILE SENSORS FOR DIFFERENT TYPES OF COMMUNICATION GRAPH G
AND DIFFERENT VALUES OF ε.

Table VI summarizes the results. The assignments between
mobile sensors and failed static sensors for the case where
G is a complete graph and for the case where G is a
cycle graph (i.e., each agent can communicate with only
one other agent in such a way that the communication
graph is complete) are shown in Figure 2 and Figure 3,
respectively, with different values of ε. For both cases, the
optimal solution is obtained with ε = 1. In most cases, both



the number of operations required for convergence and the
degree of optimality decrease as ε increases. With the same
ε, a complete communication graph converges faster than a
cycle graph. For the case where ε = 50 and ε = 100, a cycle
communication graph converges to a better solution although
it takes longer to converge. This result is not counter-intuitive
as protocol (8) only ensures convergence to an assignment
that is within nε of being optimal regardless of the type of
communication graph. However, from the results on max-
consensus, it is expected that a communication graph with
less distance between each pair of agents gives a better
convergence rate where the distance between a pair of agents
in the graph is defined as the length of the shortest path in
the graph that connects those agents.
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Fig. 2. Simulation results for complete communication graph G. Each line
indicates an associated pair of mobile sensor and failed static sensor.
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Fig. 3. Simulation results for cycle communication graph G.

VII. CONCLUSIONS AND FUTURE WORK

We presented an auction-based consensus protocol to
solve the assignment problem. The protocol allows agents
to agree on a near optimal assignment in a completely
distributed manner without any central management or global

knowledge. Furthermore, it is robust with respect to arbitrary
bounded communication time delays and changing commu-
nication graph topology. We then apply our approach to the
mobile sensor dispatch problem to let each mobile sensor
determines, in a completely distributed manner, the failed
static sensor it should recover so that the total distance moved
by all the mobile sensors is minimized.

Future work includes computing the convergence rate of
the proposed protocol with respect to communication graph
topology. In addition, we want to investigate the effects of
quantization errors on the convergence and optimality results.
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