
Synthesis of Provably Correct Controllers for Autonomous Vehicles in
Urban Environments

Tichakorn Wongpiromsarn, Sertac Karaman and Emilio Frazzoli

Abstract— This paper considers automatic synthesis of prov-
ably correct controllers for autonomous vehicles operating in
an urban environment populated with static obstacles and live
traffic. We express traffic rules such as collision avoidance, vehi-
cle separation, speed limit, lane following, passing, merging and
intersection precedence requirements in a formal specification
language. Embedded control software synthesis is then applied
to generate a controller that ensures that the vehicle obeys this
set of traffic rules in any road and traffic conditions that satisfy
certain assumptions.

I. INTRODUCTION
In the past decades, there have been growing interests in

increasing the level of autonomy in transportation systems
to enhance operational safety and efficiency. In particular,
considerable research has been directed towards putting more
autonomy into transport vehicles. The vehicles completed the
2007 DARPA Urban Challenge and the Google driverless
cars have demonstrated that the technology for autonomous
vehicles is close. However, to allow these vehicles to drive
on a road with other autonomous and human-driven vehicles,
it is crucial to verify that the autonomous vehicles operate
safely and correctly follow traffic rules in any situation. As
the number of possible situations is large, such verification
can be a challenging task. Verification of certain components
can be found, for example, in [1], [2].

In this paper, we consider an alternative approach where
a “correct” controller is automatically designed such that, by
construction, the vehicle is guaranteed to obey traffic rules
in any traffic conditions that satisfy certain assumptions. To
enable such an automatic construction, we precisely describe
the vehicle specification in a formal language. The vehicle
specification incorporates assumptions on the road and traffic
conditions as well as traffic rules including collision avoid-
ance, vehicle separation, speed limit, lane following, passing,
merging and intersection precedence requirements. We use
linear temporal logic [3] as a specification language due to
its expressiveness. Embedded control software synthesis is
then applied to automatically construct a controller that is
correct with respect to the vehicle specification.

Automatic construction of a controller for an autonomous
vehicle has been considered, for example, in [4], [5], [6],
[7] with a limited set of traffic rules. The main contribution
of this paper is in extending the set of traffic rules to cover
all the nominal road driving requirements in the technical

T. Wongpiromsarn is with the Singapore-MIT Alliance for Research and
Technology, Singapore nok@smart.mit.edu

S. Karaman and E. Frazzoli are with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology, Cambridge, MA
{sertac, frazzoli}@mit.edu

evaluation criteria of the DARPA Urban Challenge. As a
result, the autonomous vehicle exhibits much more similar
behaviors to those of human-driven vehicles. For example,
the vehicle respects the precedence order at an intersection
rather than having to wait until the intersection is clear. It
also stops within a required distance and monitors oncoming
traffic before performing a passing maneuver. To achieve
this, a finer abstraction that that used in, e.g., [4], [5] is
required and results in additional computational complexity.
The receding horizon framework proposed in [6], [7] is
applied in order to keep the problem manageable.

The remainder of the paper is organized as follows. In
Section II, we briefly describe linear temporal logic and
terminology and notations used throughout the paper. Section
III formulates the urban autonomous driving problem as
well as formally describes the vehicle specification. Sec-
tion IV provides a brief overview of existing techniques
for embedded control software synthesis. Simulation results
demonstrating that the autonomous vehicle correctly obeys
traffic rules are presented in Section V.

II. PRELIMINARIES
We use linear temporal logic (LTL) to describe system

specifications. LTL is a powerful specification language for
unambiguously expressing a wide range of desired system
behaviors and has been utilized in various applications [8].

Definition 1: A system consists of a set V of variables.
The domain of V , denoted by dom(V ), is the set of valua-
tions of V . A state of the system is an element v ∈ dom(V ).

In this paper, we consider the case where V can be
partitioned into two disjoint subsets S and E of controlled
and environment variables, respectively. The environment
variables are those related to factors over which the system
does not have control whereas the controlled variables are
those whose values can be set by the controller.

Definition 2: An atomic proposition is a statement on
system variables v ∈ V that has a unique truth value (True
or False) for a given value of v. Let ν ∈ dom(V ) be a state
of the system and p be an atomic proposition. We write ν  p
if p is True at the state ν. Otherwise, we write ν 1 p.

Definition 3: A finite transition system is a tuple T :=
(V, U,→,V0,Π,L) where V is a finite set of states, U is
a finite set of actions, → ⊆ V × U × V is a transition
relation, V0 ⊆ V is a set of initial states, Π is a set of atomic
propositions, and L : V → 2Π is a labeling function.

Definition 4: An execution σ of a discrete-time system is
an infinite sequence of system states over a particular run,
i.e., σ can be written as σ = v0v1v2 . . . where for each
t ∈ N0, vt = v[t] ∈ dom(V ) is the system state at time t.



Linear temporal logic is built up from a set of atomic
propositions, the logic connectives (¬, ∨ , ∧ , =⇒), and
the temporal modal operators (#, �, 3, U , which are read
as “next,” “always,” “eventually,” and “until,” respectively).
An LTL formula is defined inductively as follows: (1) any
atomic proposition p is an LTL formula; and (2) given LTL
formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, #ϕ and ϕ U ψ are also
LTL formulas. Other operators can be defined as follows:
ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), ϕ =⇒ ψ ≡ ¬ϕ ∨ ψ, 3ϕ ≡
True U ϕ, and �ϕ ≡ ¬3¬ϕ. A propositional formula is
one that does not include any temporal operator.

An LTL formula is interpreted over an infinite sequence
of states. Given an execution σ = v0v1v2 . . . and an LTL
formula ϕ, we write vi |= ϕ if ϕ holds at position i ∈ N0 of
σ. The semantics of LTL is defined inductively as follows:
(a) For an atomic proposition p, vi |= p if and only if (iff)
vi  p; (b) vi |= ¬ϕ iff vi |6= ϕ; (c) vi |= ϕ ∨ ψ iff vi |= ϕ or
vi |= ψ; (d) vi |= #ϕ iff vi+1 |= ϕ; and (e) vi |= ϕ U ψ iff
there exists j ≥ i such that vj |= ψ and ∀k ∈ [i, j), vk |= ϕ.
Based on this definition, #ϕ holds at position vi iff ϕ holds
at the next state vi+1, �ϕ holds at position i iff ϕ holds at
every position in σ starting at position i, and 3ϕ holds at
position i iff ϕ holds at some position j ≥ i in σ.

Definition 5: An execution σ = v0v1v2 . . . satisfies ϕ,
denoted by σ |= ϕ, if v0 |= ϕ.

Definition 6: Let Σ be the set of all executions of a
system. The system is said to be correct with respect to its
specification ϕ, written Σ |= ϕ, if all its executions satisfy
ϕ, that is, (Σ |= ϕ) ⇐⇒

(
∀σ, (σ ∈ Σ) =⇒ (σ |= ϕ)

)
.

Safety (invariance) and reachability are examples of
widely used properties. Given a propositional formula p that
describes states of interest, a safety formula is of the form
�p, which asserts that p remains invariantly true throughout
an execution. A reachability formula is of the form 3p,
which asserts that p becomes true at least once in an
execution. Obstacle avoidance and reaching a goal state are
examples of safety and reachability properties, respectively.

III. URBAN AUTONOMOUS DRIVING PROBLEM
We consider the problem of autonomous driving in par-

tially known urban environments populated with static obsta-
cles and live traffic similar to those faced in the 2007 DARPA
Urban Challenge (DUC). The aim is to automatically syn-
thesize a controller that ensures that the vehicle obeys traffic
rules while executing a given driving task.
A. Problem Setup

A road network R is defined as a collection of lanes
and intersections. A lane is connected to another via an
intersection. Let Nl and Nint be the number of lanes and
intersections, respectively, in R. Then, R can be written
as R = (L, I) where L = {L1, . . . ,LNl

} and I =
{I1, . . . , INint} are sets of all the lanes and intersections,
respectively, in R. Without loss of generality, we assume
that each lane can be exited through only one intersection.

A lane is defined as a tuple Li := (XLi
, dLi

, vLi
,

EntryLi
, ExitLi

, StopLi
, AdjLi

) where i ∈ {1, . . . , Nl},
XLi ⊂ R2 is a set of points (i.e., x, y coordinates) in
Li and can be represented, e.g., by the union of polygons,

dLi
∈ {−1, 1} is the direction of Li defined in a consistent

manner for all the lanes in R (i.e., dLi = dLj iff lanes Li,Lj
have the same direction of travel), vLi ∈ R is the speed limit,
EntLi

⊂ XLi
is a set of entry points, ExitLi

⊂ XLi
is a

set of exit points, StopLi
∈ {0, 1} indicates whether there is

a stop line at the exit of Li, and AdjLi
⊆ L is a set of lanes

that can be entered from every point in Li without going
through any other lane. Hence, AdjLi essentially includes
all the lanes that are adjacent to Li with no median strip in
the middle. For a lane with a stop line at the exit, we assume
that the exit points are exactly where the stop line is.

An intersection is defined as a tuple Ii = (XIi , vIi ,
ExitIi , EntryIi , TurnIi) where i ∈ {1, . . . , Nint}, XIi ⊂
R2 is a set of points in Ii, vIi

∈ R is the speed limit, ExitIi

is a set of exit lanes (i.e., lanes that can be exited through
Ii), EntryIi

is a set of entry lanes (i.e., lanes that can be
entered from a lane in ExitIi through intersection Ii), and
TurnIi is a set of tuples that specify the associated pairs of
exit and entry lanes. Each tuple in TurnIi

is of the form
(Ljex ,Ljen , typej) where Ljex ∈ ExitIi

, Ljen ∈ EntryIi
,

and typej ∈ {−1, 0, 1} defines the type of turn (left, straight
and right, respectively) from lane Ljex to Ljen .

Next, we define controlled and environment variables.
Controlled Variables: The variables over which the

system has control are x, d and v where x ∈ R2 is the
current position of the vehicle, d ∈ {−1, 1} is the direction
defined in a consistent manner with the lane directions, and
v ∈ R is the speed of the vehicle.

Environment Variables: The environment variables are
the positions of the static obstacles and other vehicles.
We assume that the environment state can be obtained
accurately at run time through the onboard sensors. Let
Obs = Obsf ∪Obsb ∪Obsl ∪Obsr be a set of positions of
all the static obstacles where Obsf and Obsb include all the
static obstacles in our lane, Obsf include obstacles in front
of us whereas Obsb include obstacles behind our vehicle,
and Obsl and Obsr include all the static obstacles in the
lanes to our left and right, respectively. In addition, we define
V eh to be a set of all the other vehicles, identified, e.g.,
by unique IDs. Let Loc(V eh), Dir(V eh) and Speed(V eh)
denote sets of positions, directions and speeds, respectively,
of the vehicles in V eh. For any X ⊆ R2, let V eh|X =
{veh ∈ V eh|Loc(veh) ∈ X} denote the set of all the
vehicles whose positions are within X .

B. Autonomous Vehicle Specification
We use the DUC Technical Evaluation Criteria [9] as the

requirement of the vehicle. For the clarity of the presentation,
we consider only the case where the vehicle only needs to
drive on a road and not in an unstructured region such as
parking lot.1 In this section, we show how each requirement
can be expressed in LTL. The overall requirement of the ve-
hicle is simply the logical conjunction of these requirements.

1Most of the requirements for those unstructured cases are included in the
case we consider in this paper, potentially with different parameters such
as vehicle separation. However, many requirements considered in this paper
such as staying in a travel lane, passing, stopping at a stop line, intersection
precedence, merging and left turn are not included in unstructured cases.



Checkpoints: The vehicle must pass over each checkpoint in
the correct lane and in the correct sequence.2 Assuming that
there exists a high-level mission planning component that
keeps track of the last checkpoint the vehicle has crossed
and issues the next checkpoint to the controller, the corre-
sponding requirement for the traffic planning component is
reduced to eventually reaching the next checkpoint. Let ck be
the position of the next checkpoint and dck be the direction
of the lane containing the next checkpoint. This requirement
can be expressed in LTL as

3(‖x− ck‖ ≤ ∆ck ∧ d = dck), (1)

where ∆ck represents the maximum distance between the
vehicle and the checkpoint such that the checkpoint is
considered being passed over.
Collisions and vehicle separation: The vehicle maintains a
minimum standoff of Xobs (e.g., 1 meter) from all obstacles
and vehicles in all areas:

�(dist(x,Obs) ≥ Xobs ∧ dist(x, Loc(V eh)) ≥ Xobs),
(2)

where for any x ∈ R2, Y ⊂ R2, dist(x, Y ) = infy∈Y ‖x−y‖
is the closest distance between x and any y ∈ Y .

Speed limits: Vehicle speed conforms to the maximum limit:∧
i∈{1,...,Nl}�(x ∈ XLi =⇒ v ≤ vLi) ∧∧
i∈{1,...,Nint}�(x ∈ XIi =⇒ v ≤ vIi).

(3)

Passing: The vehicle must always come to a full stop and
monitor oncoming traffic before crossing a double yellow
line. The vehicle maintains a forward vehicle separation of
Xpass,1 when leaving lane to initiate a passing maneuver in
a travel area. The vehicle returns to travel lane with vehicle
separation between Xpass,2 and Xpass,3 when completing a
passing maneuver. We define propositions πp and πc. Propo-
sition πp indicates whether there is an obstacle blocking
the travel lane such that the vehicle is allowed to perform
a passing maneuver. It is initialized to False and evolves
according to the following logical dynamical equation

πp[t+ 1] =
(∨

i(x[t] ∈ XLi ∧ d[t] = dLi) ∧
Obsf [t] 6= ∅ ∧ v[t] = 0 ∧
V ehl[t] = ∅

)
∨
(
πp[t] ∧ ¬πc[t]

)
,

(4)

where V ehl ⊆ V eh is a set of all the vehicles in the left
lane that are driving in the direction towards our vehicle.
Proposition πc indicates whether the vehicle has completed
the passing maneuver. It can be defined as

πc[t] =
(∨

i(x[t] ∈ XLi
∧ d[t] = dLi

) ∧ Obsf [t] = ∅
)

∨
(∨

i(x[t] ∈ XLi
∧ d[t] 6= dLi

) ∧
(Obsr[t] = ∅ ∨ (Obsr,f [t] = ∅ ∧
dist(x[t], Obsr,b[t]) ≥ Xpass,3))

)
∨ ¬πp[t],

2This statement illustrates ambiguity of requirements written in an
informal language. Suppose a given sequence of checkpoint is c1, c2, . . . .
This statement can be interpreted as the vehicle may not navigate through
c2 before passing over c1 at all. However, in the DUC, such a behavior is
allowed. However, c2 will not be considered as already being crossed and
hence need to be visited again after the vehicle crosses c1.

where Obsr,f , Obsr,b ⊆ Obsr are disjoint sets of static
obstacles in the right lane that are in front of and behind our
vehicle, respectively. Note that πc, together with πp, ensures
that the vehicle returns to the lane with vehicle separation
less than Xpass,3.

The passing requirement can then be expressed in LTL as
�
((
πp ∧

∨
i(x ∈ XLi

∧ d = dLi
) ∧

(πp U
∨
i(x ∈ XLi ∧ d 6= dLi))

)
=⇒

dist(x,Obsf ) ≥ Xpass,1

)
∧

�
(∨

i(x ∈ XLi ∧ d 6= dLi) =⇒(∨
i(x ∈ XLi

∧ d 6= dLi
) U (Obsr = ∅ ∨

(Obsr,b 6= ∅ ∧ dist(x,Obsr,b) ≥ Xpass,2))
))
.

(5)

The first and second always express the vehicle separation
requirements for leaving and returning to lane, respectively.
Stay in lane: The vehicle remains entirely in travel lane at
all times except when performing a legal traffic maneuver
such as a left turn or maneuvering to avoid an obstacle:

�

((
¬πp ∧

∨
i

x ∈ XLi

)
=⇒

∨
i

(x ∈ XLi
∧ d = dLi

)

)
.

(6)
Note that this requirement is simplified by the assumption
that the vehicle is a point. For vehicles with non-zero length
and width, XLi on the right hand side of (6) needs to be
changed to a smaller set to account for the size of the vehicle.
Stop line: The vehicle stops within Xstop (e.g., 1 meter)
of the center of the stop line at intersection. To express this
requirement in LTL, we define a proposition πs that indicates
whether the vehicle has stopped at the current stop line. We
set πs[0] = False and for t ≥ 0,

πs[t+ 1] =
∨
i

(
dist(x[t], ExitLi

) ≤ Xstop ∧
StopLi

= 1
)
∧ (πs[t] ∨ v[t] = 0).

The stop line requirement can then be expressed in LTL as

�
((∨

i(dist(x,ExitLi) ≤ Xstop ∧ StopLi = 1)
)

=⇒ (πs ∨ v = 0)
)
.

(7)

Intersection precedence and merging: The vehicle respects
precedence order at intersections and does not proceed out
of turn. In addition, the vehicle always merges into moving
traffic when there is a delay of τm seconds or more before
the arrival of the next traffic-vehicle. Let L[t] ∈ L be the lane
in which the vehicle is at time t, i.e., x[t] ∈ L[t]. (In the case
where the vehicle is in an intersection, we let L[t] be the last
lane the vehicle is in.) Also, let I[t] be the intersection with
L[t] ∈ ExitI[t] or x[t] ∈ XI[t]. Note that there can be only
one such I[t] due to the assumption that each lane can only
exited through one intersection. Finally, let

Xst[t] =
⋃

Lj∈ExitI[t]

{x ∈ Lj | dist(x,ExitLj ) ≤ Xstop},

Xns[t] = XIt
∪⋃

Lj ∈ ExitI[t]
and StopLj

= 0

{x ∈ Lj | dist(x− ExitLj ) ≤ τmvLj}.

(8)
Roughly, Xst[t] and Xns[t] define an area around the

intersection where we need to monitor oncoming traffic be-
fore proceeding through the intersection. Vehicles in Xns[t]



have the right of way; thus, we cannot proceed through the
intersection while there is a vehicle in Xns[t]. In addition,
to satisfy the precedence order, we cannot proceed through
the intersection while a vehicle that arrives Xst[t] before our
vehicle has not proceeded. Note that in the computation of
Xns[t] above, we assume that the other vehicles also conform
to maximum speed limit. This assumption can be relaxed by
changing vLj

to the maximum speed of other vehicles.
Next, we compute the associated sets V ehst[t] and

V ehns[t] of vehicles that should proceed through the inter-
section before our vehicle. From the merging requirement,
we simply set V ehns[t] = V eh[t]|Xns[t]. From the intersec-
tion precedence requirement, V ehst[t] can be computed by
setting V ehst[0] = V eh[0]|Xst[0] and for t > 0,

V ehst[t] =


V eh[t]|Xst[t] if StopL[t] = 1 ∧

dist(x[t], ExitL[t]) ≤ Xstop

∧ v[t] = 0 ∧ ¬πs[t]
V ehst[t− 1] otherwise

The intersection precedence requirement can then be ex-
pressed in LTL as
�
((∨

i(dist(x,ExitLi
) ≤ Xstop ∧ StopLi

= 1) ∧
V ehns 6= ∅ ∧ Loc(V ehst) ∩Xst 6= ∅

)
=⇒ v = 0

)
.

(9)

Left turn: The vehicle always completes a left turn across a
lane carrying oncoming traffic when there is a delay of τl or
more before the passing of the next oncoming vehicle. For
any given time t, we define Xleft[t] to be an area where we
need to monitor the traffic before making the left turn:
Xleft[t] = XI[t]∪⋃

Lj ∈ ExitI[t]
and StopLj

= 0

{x ∈ Lj | dist(x,ExitLj
) ≤ τlvLj

},

(10)
where I[t] is defined as in (8). In addition, we let
V ehleft[t] = V eh[t]|Xleft[t] be the set of all the vehicles that
should proceed through the intersection before our vehicle.
The left turn requirement can then be expressed in LTL as
�
((∨

i,j,k

(
dist(x,ExitLi

) ≤ Xstop ∧ Li ∈ ExitIj
∧

((x ∈ Li ∨ x ∈ Ij) U (x ∈ Lk ∧ Lk ∈ EntryIj ∧
(Li,Lk,−1) ∈ TurnIj

))
)
∧ V ehleft 6= ∅

)
=⇒ v = 0

)
.

(11)
IV. EMBEDDED CONTROL SOFTWARE

SYNTHESIS
The autonomous driving problem above poses a number of

challenges for system designers. First, the system includes a
tight coupling between computational and physical elements.
In addition, the specification is reactive in the sense that
the vehicle needs to interact with its environment (e.g.,
obstacles and other vehicles) and whether it satisfies its
specification depends on the behavior of the environments.
For example, whether the vehicle exhibits a correct behavior
at an intersection depends on the behavior of other vehicles,
e.g., which vehicle gets to the intersection first.

A common two-step procedure to the above synthesis
problem, as illustrated in Fig. 1, is based on constructing
a finite-state abstraction of the underlying physical system
(e.g., the motion of the vehicles) and utilizing polynomial-
time algorithms for digital design synthesis to synthesize

a strategy, represented by a finite state automaton, satis-
fying high-level specifications. This procedure leads to a
hierarchical, two-layer control structure (see Fig. 2) with
a discrete planner computing a high-level, discrete plan
to be implemented by a low-level, continuous controller.
Simulation and bisimulation relations [10] provide a proof
that the continuous execution preserves the correctness of the
discrete plan. The main limitation of this two-step approach
is almost invariably a combinatorial growth of the state space,
commonly known as the state explosion problem.

In this section, we provide a brief overview of existing
techniques for finite state abstraction of continuous systems
and digital design synthesis and a receding-horizon based
approach to mitigate the state explosion problem.

System
Model

System
Spec

Finite
Transition

System

Discrete
Planner

Continuous
Controller

Abstraction
Procedure

Digital
Design

Synthesis

Fig. 1. Two-step procedure for embedded control software synthesis.

Discrete
Planner

Continuous
Controller

Local Control

Plant

∆

noise

environment

plan response
u

δu

sd

Fig. 2. The two-layer control structure. In addition to the components
discussed in this section, ∆, which captures uncertainties in the plant model,
may be added to make the model more realistic.

A. Finite State Abstraction of Continuous Systems
There are mainly 2 different ways of abstracting a continu-

ous system into a finite transition systems: fixed abstraction
and sampling-based approaches. Fixed abstraction is done
offline and is based on partitioning the continuous state
space into a finite number of equivalence classes or cells
ν1, . . . , νN such that the partition is proposition preserving
[10]. Roughly speaking, a partition is said to be proposition
preserving if for any atomic proposition p ∈ Π and any states
v1 and v2 that belong to the same cell, v1 satisfies p if and
only if v2 also satisfies p. Each of ν1, . . . , νN then serves as a
state of the finite transition system. We add a transition from
νi to νj where i, j ∈ {1, . . . , N} if there exists a controller
that can bring the system from νi to νj while always staying
in the union of νi and νj .

Several abstraction methods have been proposed based on
a fixed abstraction. For example, a continuous-time, time-
invariant model was considered in [11], [12] and [13] for
special cases of fully actuated (ṡ(t) = u(t)), kinematic
(ṡ(t) = A(s(t))u(t)) and piecewise affine dynamics, re-
spectively, while a discrete-time, time-invariant model was



considered in [6] and [14] for special cases of piecewise
affine and controllable linear systems, respectively. Discrete-
time linear time-invariant state space model with exogenous
disturbances was considered in [15], [16]. Reference [17]
deals with more general dynamics by relaxing the bisim-
ulation requirement and using the notions of approximate
simulation and simulation functions [18].

A sampling-based method, in contrast, incrementally con-
structs a finite state abstraction of a continuous system online
[19]. This construction is based on a random sampling
procedure, which can be considered as an extension of
the Rapidly-exploring Random Trees (RRT) algorithm. This
approach has been used in conjunction with incremental
model checking to extract a controller that satisfies a given
specification. However, as model checking only provides cor-
rectness guarantee with respect to the current environment,
it remains an ongoing work to apply the sampling-based
approach in conjunction with game theoretic synthesis to
ensure system correctness in dynamic environments.

B. Digital Design Synthesis: A Two-Player Game Approach
From Definition 6, for a system to be correct, its specifi-

cation ϕ must be satisfied in all of its executions regardless
of the behavior of the environment in which it operates.
Thus, the environment can be treated as an adversary and
the synthesis problem can be viewed as a two-player game
between the system and the environment: the environment
attempts to falsify ϕ while the system attempts to satisfy ϕ.
We say that ϕ is realizable if the system can satisfy ϕ no
matter what the environment does. For a Generalized Reac-
tivity(1) specification, Piterman, et al. shows that checking its
realizability and synthesizing the corresponding automaton
can be performed in polynomial time [20].

If the specification is realizable, a digital design synthesis
tool such as JTLV [20] generates a finite state automaton that
represents a set of transitions the system should follow in
order to satisfy ϕ. Otherwise (e.g., in the case of conflicting
requirements), it provides the set of initial states starting from
which there exists a set of moves of the environment such
that the system cannot satisfy ϕ. Hence, even though the
system may be designed manually, it is important to check
the realizability of a given specification prior to the design
phase as it informs the system designer whether it is possible
at all to design a system that meets the given specification.

The main limitation of the synthesis of finite state au-
tomata is the state explosion problem. In the worst case, the
resulting automaton may contain all the possible states of the
system. For example, if the system has N variables, each can
take any value in {1, . . . ,M}, then there may be as many
as MN nodes in the automaton.

C. Receding Horizon Framework
For systems with a certain structure, the computational

complexity of the synthesis problem can be alleviated by
solving the problem in a receding horizon fashion, i.e., com-
pute the discrete plan over a shorter horizon, starting from the
current state, implement the initial portion of the plan and
recompute the plan. This approach essentially reduces the

ν1

ν2

ν3

ν4

ν5 ν6 ν7

ν8

ν9

ν10

W0

W1

W2W3

W4

Fig. 3. A graphical description of the receding horizon framework.

synthesis problem into a set of smaller problems. The size
of these smaller problems depends on the horizon length,
which should be made as small as possible, subject to the
realizability of the resulting short-horizon specifications as
too short horizon may render the specifications unrealizable.

In [7], sufficient conditions that ensure that this reced-
ing horizon implementation preserves the desired system-
level properties are presented. A graphical description of
the receding horizon framework is illustrated in Fig. 3.
First, we construct a finite state abstraction of the physical
system. A partial order relation �ϕ between the discrete
states ν1, . . . , νN needs to be established such that for any
destination state νk, νk ≺ϕ νi for all i such that νi is
not the destination. The disjoint sets W0, . . . ,WM can then
be constructed such that for any discrete states νi, νj ∈
Wk, k ∈ {0, . . . ,M}, νi =ϕ νj and W0 only contains the
destination states. Finally, a map F : {W0, . . . ,WM} →
{W0, . . . ,WM}, which captures the horizon length, and a
receding horizon invariant Φ need to be defined.

The receding horizon approach works as follows. Suppose,
for example, that the initial state of the system is ν1. Since
ν1 ∈ W4, we synthesize an automaton satisfying the short-
horizon specification where (a) the initial state is assumed to
be in W4 and satisfies Φ, (b) the environment is assumed to
satisfy the assumptions stated in the original specification,
and (c) the original safety properties are satisfied, Φ holds
throughout an execution, and the robot eventually reaches a
state in F(W4). The robot then executes this automaton until
it reaches a state νj ≺ϕ ν1. At this point, the robot computes
an automaton for the short-horizon specification associated
with the initial state νj . This process is then repeated until the
robot reaches the destination ν10. We refer the reader to [7]
for a detailed discussion on this receding horizon framework.

V. EXAMPLE
We consider a road network of Fig. 4. The checkpoint is

located on R1 as marked by a star in Fig. 4(a). First, we apply
a fixed abstraction technique and partition the roads into cells
such that there are 2 cells across the width of the road, one
completely in the right lane and the other completely in the
left lane, as shown in Fig. 4(b). It has been shown in [15]

R1

R3

I4 I1

+

+
-

+
- R5+

-R6 +
-

R7 +
-

-

R2

+
-

+
-

+
-

+
-

R4
I2I3

R8

R9 R10
(a) (b)

Fig. 4. (a) Road network and (b) its partition.



that this is a valid abstraction of the system, provided that
the state of the vehicle evolves based on a fully actuated
model ẋ(t) = u(t) + w(t) where u(t), w(t) ∈ R2 are the
control effort and disturbance at time t, respectively, with
the constraints ‖u(t)‖∞ ≤ 1 and ‖w(t)‖∞ ≤ 0.1,∀t ≥ 0.
We then transform the specification in Section III-B such that
it is written in terms of cells (as opposed to x, y coordinates
as in the original specification).

In order to make the resulting specification realizable, we
impose the following assumptions on the behavior of static
obstacles and other vehicles: (1) Our vehicle does not collide
with obstacles or other vehicles at the initial state; (2) If our
vehicle is on the left lane at the initial state, then there is an
obstacle on the right lane; (3) The road is not blocked; (4)
Obstacles and other vehicles are always detected before our
vehicle gets within 1 cell apart from them; (5) Other vehicles
do not collide with obstacles; (6) While our vehicle is moving
forward, other vehicles do not collide with our vehicle from
behind; (7) When our vehicle stops, other vehicles do not
collide with our vehicle; (8) Other vehicles respect the stay
in lane rule; (9) Other vehicles move infinitely often; (10)
Infinitely often, V ehns = ∅; and (11) Infinitely often, there
is no oncoming traffic on the left lane.

Next, we apply the receding horizon framework. To this
end, a software toolbox TuLiP [21] is employed. First, TuLiP
verifies that a planning horizon of length 2 cells is sufficiently
long and all the resulting short horizon specifications with
this horizon are realizable. The partial order relation as well
as the map F and the receding horizon invariant can be
constructed as in [7]. The finite state automata generated by
TuLiP contain between 571 and 2434 states and take between
0.7 and 6.5 seconds to compute on a MacBook Pro with a 2.8
GHz Intel Core 2 Duo processor. Snapshots of a simulation
run is shown in Fig. 5 for different scenarios. The video of
this run can be accessed at http://dl.dropbox.com/
u/29005314/sim.zip.

REFERENCES

[1] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control:
Hybrid, distributed, and now formally verified,” in FM (M. Butler
and W. Schulte, eds.), vol. 6664 of LNCS, pp. 42–56, Springer, 2011.

[2] T. Wongpiromsarn, S. Mitra, R. M. Murray, and A. Lamperski,
“Periodically controlled hybrid systems: Verifying a controller for an
autonomous vehicle,” in Hybrid Systems: Computation and Control
(R. Majumdar and P. Tabuada, eds.), vol. 5469 of LNCS, pp. 396–
410, Springer, 2009.

[3] E. A. Emerson, “Temporal and modal logic,” in Handbook of theoreti-
cal computer science (vol. B): formal models and semantics, pp. 995–
1072, Cambridge, MA, USA: MIT Press, 1990.

[4] H. Kress-Gazit and G. J. Pappas, “Automatically synthesizing a plan-
ning and control subsystem for the DARPA Urban Challenge,” in IEEE
International Conference on Automation Science and Engineering,
pp. 766–771, 2008.

[5] H. Kress-Gazit, D. C. Conner, H. Choset, A. A. Rizzi, and G. J. Pap-
pas, “Courteous cars: Decentralized multi-agent traffic coordination,”
Robotics and Automation Magazine, vol. 15, no. 1, pp. 30–38, 2008.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc. of IEEE
Conference on Decision and Control, 2009.

[7] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in International Conference
on Hybrid Systems: Computation and Control, 2010.

(a) (b)

(c) (d)

Fig. 5. Simulation results. (a) Trajectory of the vehicle. (b) Vehicle stops
and wait for the oncoming traffic before performing a passing maneuver.
(c) Vehicle performs a passing maneuver after encountering an obstacle that
blocks the travel lane. (d) Vehicle stops at a stop line and waits for its turn.

[8] A. Pnueli, “Applications of temporal logic to the specification and
verification of reactive systems: a survey of current trends,” Current
Trends in Concurrency. Overviews and Tutorials, pp. 510–584, 1986.

[9] “Urban Challenge technical evaluation criteria.” Defense Advanced
Research Projects Agency, 2006.

[10] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
no. 7, pp. 971–984, 2000.

[11] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Where’s Waldo? Sensor-
based temporal logic motion planning,” in Proc. of IEEE International
Conference on Robotics and Automation, pp. 3116–3121, April 2007.

[12] D. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G. Pappas,
“Valet parking without a valet,” in Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 572–577, 2007.

[13] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transaction
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[14] P. Tabuada and G. J. Pappas, “Linear time logic control of linear
systems,” IEEE Transaction on Automatic Control, vol. 51, no. 12,
pp. 1862–1877, 2006.

[15] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Automatic synthesis
of robust embedded control software,” in AAAI Spring Symposium on
Embedded Reasoning: Intelligence in Embedded Systems, pp. 104–
111, 2010.

[16] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control.
submitted.

[17] A. Girard and G. J. Pappas, “Hierarchical control system design using
approximate simulation,” Automatica, vol. 45, no. 2, pp. 566–571,
2009.

[18] A. Girard, A. A. Julius, and G. J. Pappas, “Approximate simulation re-
lations for hybrid systems,” Discrete Event Dynamic Systems, vol. 18,
no. 2, pp. 163–179, 2008.

[19] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc. of IEEE Conference
on Decision and Control, 2009.

[20] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1)
designs,” in Verification, Model Checking and Abstract Inter-
pretation, vol. 3855 of Lecture Notes in Computer Science,
pp. 364 – 380, Springer-Verlag, 2006. Software available at
http://jtlv.sourceforge.net/.

[21] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: A software toolbox for receding horizon temporal logic plan-
ning,” in International Conference on Hybrid Systems: Computation
and Control, 2011. Software available at http://sourceforge.
net/projects/tulip-control/.


