
TuLiP: A Software Toolbox for Receding Horizon Temporal
Logic Planning

Tichakorn Wongpiromsarn*, Ufuk Topcu**, Necmiye Ozay**, Huan Xu**, and Richard M. Murray**
* Singapore-MIT Alliance for Research and Technology, Singapore

** California Institute of Technology, Pasadena, CA
{nok, utopcu, necmiye, mumu, murray}@cds.caltech.edu

ABSTRACT
This paper describes TuLiP, a Python-based software tool-
box for the synthesis of embedded control software that is
provably correct with respect to an expressive subset of lin-
ear temporal logic (LTL) specifications. TuLiP combines
routines for (1) finite state abstraction of control systems,
(2) digital design synthesis from LTL specifications, and
(3) receding horizon planning. The underlying digital de-
sign synthesis routine treats the environment as adversary;
hence, the resulting controller is guaranteed to be correct
for any admissible environment profile. TuLiP applies the re-
ceding horizon framework, allowing the synthesis problem to
be broken into a set of smaller problems, and consequently
alleviating the computational complexity of the synthesis
procedure, while preserving the correctness guarantee.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods; D.2.10 [Software Engineering]:
Design—Methodologies

General Terms
Design, Verification

Keywords
Linear temporal logic, receding horizon control

1. INTRODUCTION
To achieve higher levels of autonomy, modern embedded

control systems need to reason about complex, uncertain
environments and make decisions that enable complex mis-
sions to be accomplished safely and efficiently. To this end,
linear temporal logic (LTL) is widely used as a specification
language to precisely define system correctness properties.
The embedded control software needs to be able to inte-
grate discrete and continuous decision-making and provide
correctness guarantee with respect to a given specification.
Furthermore, since the environment may be dynamic and
unknown a priori, it is important that the controller ensures
proper response to all the admissible environment profiles.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’11, April 12–14, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0629-4/11/04 ...$10.00.

A common approach to embedded control software syn-
thesis is to construct a finite transition system that serves as
an abstract model of the physical system and synthesize a
strategy, represented by a finite state automaton, satisfying
the given properties based on this model. Software packages
based on this procedure include LTLCon [4], conPAS2 [11],
Pessoa [5] and LTLMoP [1]. LTLCon and conPAS2 han-
dle affine systems and piecewise affine systems, respectively,
and arbitrary LTL specifications. Pessoa admits nonlinear
and switched dynamics but only a very limited class of LTL
specifications. However, these three tools do not handle the
adversarial nature of the environment. Hence, the controller
is only provably correct with respect to an a priori known
and fixed environment. In contrast, LTLMoP accounts for
adversaries but only considers fully actuated systems oper-
ating in the Euclidean plane. To keep the synthesis problem
tractable, LTLMoP only admits the GR[1] fragment of LTL.
A sampling-based method has been proposed for µ-calculus
specifications in [3] but does not provide a correctness guar-
antee for all the admissible environments.

This paper introduces TuLiP, a Python-based toolbox for
embedded control software synthesis. Similar to LTLMoP,
TuLiP models the environment as an adversary and only
considers GR[1] formulas. This often leads to the state ex-
plosion problem since all the admissible environment profiles
need to be taken into consideration in the synthesis process.
TuLiP alleviates this complexity by integrating a receding
horizon framework [9]. Additionally, it admits general affine
dynamics with bounded disturbances.

2. TuLiP FEATURES
We now summarize two key features of TuLiP (available

at http://www.cds.caltech.edu/tulip).

2.1 Embedded Control Software Synthesis
TuLiP deals with systems that comprise the plant, i.e., the

physical component regulated by the controller, and its po-
tentially dynamic and a priori unknown environment. Note
that the environment does not only include the factors that
are external to the plant but it also includes the factors
over which the system does not have control, e.g., hardware
failure. The plant may contain both continuous (e.g. phys-
ical) and discrete (e.g. computational) components. TuLiP

models the embedded control software synthesis problem as
a game between the plant and the environment. Given the
model of the plant and system specification ϕ in LTL, TuLiP
provides a function that automatically synthesizes a con-
troller that ensures system correctness with respect to ϕ for
any admissible environment, if such a controller exists (i.e.,
ϕ is realizable). If ϕ is unrealizable, TuLiP also provides

counter examples, i.e., initial states starting from which the
environment can falsify ϕ regardless of controller’s actions.

The synthesis feature relies on (1) generating a proposi-
tion preserving partition of the continuous state space, (2)
continuous state space discretization based on the evolution
of the continuous state [8], and (3) digital design synthesis.
JTLV [6] is used as the underlying synthesis routine.

Currently, TuLiP handles the case where the continuous
state of the plant evolves according to discrete-time linear
time-invariant dynamics: for t ∈ {0, 1, 2, . . .}, s[t + 1] =
As[t] + Bu[t] + Ed[t], u[t] ∈ U , d[t] ∈ D, s[0] ∈ S, where
S ∈ Rn is the continuous state space, U ∈ Rm and D ∈ Rp
are the sets of admissible control inputs and exogenous dis-
turbances, s[t], u[t], d[t] are the continuous state, the control
signal and the exogenous disturbance, respectively, at time
t. U ,D,S are assumed to be bounded polytopes.

The specification ϕ is assumed to be of the form

ϕ =
`
ψinit ∧ �ψe ∧

^
i∈If

�3ψf,i
´

=⇒
`
�ψs ∧

^
i∈Ig

�3ψg,i
´
,

known as GR[1]. Here ψinit, ψe, ψf,i, i ∈ If , ψs and ψg,i, i ∈
Ig are propositional formulas. ψinit, ψe and ψf,i, i ∈ If es-
sentially describe the assumptions on the initial state of the
system and the environment. ψs and ψg,i, i ∈ Ig describe
the desired behavior of the system. See [9] for more details.

2.2 Receding Horizon Framework
For systems with a certain structure, the computational

complexity of the planner synthesis can be alleviated by solv-
ing the planning problems in a receding horizon fashion, i.e.,
compute the plan or strategy over a “shorter” horizon, start-
ing from the current state, implement the initial portion of
the plan, and recompute the plan. This approach essentially
reduces the problem into a set of smaller problems. Cer-
tain sufficient conditions ensure that this “receding horizon”
strategy preserves the desired system-level properties.

Given a specification in the form of ϕ above, TuLiP first
constructs a finite state abstraction of the physical system.
Then, for each i ∈ Ig, we organize the system states into
a partially ordered set Pi = ({Wi

j},�ψg,i) where Wi
0 are

the set of states satisfying ψg,i. For each j, we define a
short-horizon specification Ψi

j associated with Wi
j as

Ψi
j =

`
(ν ∈ Wi

j) ∧ Φ ∧ �ψe ∧
V
k∈If

�3ψf,k
´

=⇒
`
�ψs ∧ �3(ν ∈ F i(Wi

j)) ∧ �Φ
´
.

Here Φ is a propositional formula that describes receding
horizon invariants and F i : {Wi

j} → {Wi
j} defines the in-

termediate goal for starting in Wi
j . Let V be the entire

state space of the system. As described in [9], a sufficient
condition for the receding horizon strategy to lead to cor-
rect execution with respect to ϕ is that for all i ∈ Ig, (1)
Wi

0 ∪ Wi
1 ∪ . . . ∪ Wi

p = V, (2) Wi
0 ≺ψg,i W

i
j , ∀j 6= 0, (3)

F i(Wi
j) ≺ψg,i W

i
j , ∀j 6= 0, (4) ψinit =⇒ Φ is a tautology,

and (5) Ψi
j is realizable ∀j.

Given the plant model, ϕ, {Wi
j}, F i and Φ, TuLiP auto-

matically constructs the short horizon specification Ψi
j for

each i, j. It includes functions for verifying that there ex-
ists a partial order �ψg,i and that the sufficient condition
above is satisfied; and automatically computing the receding
horizon invariant Φ if one exists or report an error otherwise.

3. APPLICATIONS AND DISCUSSIONS
We have demonstrated the successful applications of TuLiP

in multiple applications, including autonomous driving [9],
vehicle management systems in avionics [10] and multi-target

tracking. Other simpler examples are included in the current
release of the toolbox. For the autonomous driving prob-
lem, the receding horizon framework needs to be applied
for the car to be able to drive a reasonable distance. Due
to the state explosion problem, TuLiP cannot automatically
find the receding horizon invariant Φ for this specific ap-
plication. Nevertheless, it provides useful guidelines for the
user to easily manually construct Φ. Once Φ is constructed,
TuLiP successfully checks that the sufficient condition for
applying the receding horizon strategy is satisfied.
TuLiP constructs Φ roughly by starting Φ = True and

iterating between (1) checking the realizability of each Ψi
j ,

and (2) updating Φ to be the conjunction of current Φ and
the negation of the counter examples of unrealizable Ψi

j (if
any). This process stops when ψinit =⇒ Φ is no longer
a tautology or all the Ψi

j are realizable. Since the counter
examples are given as the enumeration of all the infeasible
initial states, the size of Φ quickly increases. An extension
of the current version of TuLiP is to implement a procedure
for reducing the counter examples into a small formula. We
also plan to integrate various existing software packages into
TuLiP including a user-friendly simulation environment such
as Player/Stage [2] and a state space discretization proce-
dure that admits a more general class of systems (e.g. one
based on approximate simulations and bisimulations as dis-
cussed in [7] and implemented in [5]).

4. REFERENCES
[1] C. Finucane, G. Jing, and H. Kress-Gazit. LTLMoP.

http://code.google.com/p/ltlmop/.

[2] B. Gerkey, R. Vaughan, and A. Howard. The
Player/Stage project: Tools for multi-robot and
distributed sensor systems. In Conf. on Advanced
Robotics, 2003.

[3] S. Karaman and E. Frazzoli. Sampling-based motion
planning with deterministic µ-calculus specifications.
In IEEE CDC, 2009.

[4] M. Kloetzer and C. Belta. LTLCon.
http://iasi.bu.edu/~software/LTL-control.htm.

[5] M. Mazo, A. Davitian, and P. Tabuada. Pessoa: A
tool for embedded controller synthesis. In T. Touili,
B. Cook, and P. Jackson, editors, CAV, volume 6174
of LNCS, pages 566–569. Springer, 2010.

[6] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive(1) designs. In Verification, Model Checking
and Abstract Interpretation, volume 3855 of LNCS,
pages 364 – 380. Springer, 2006.
http://jtlv.sourceforge.net/.

[7] P. Tabuada. Verification and Control of Hybrid
Systems: A Symbolic Approach. Springer, 2009.

[8] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Automatic synthesis of robust embedded control
software. In AAAI SS on Embedded Reasoning:
Intelligence in Emb’d Systems, pages 104–111, 2010.

[9] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Receding horizon control for temporal logic
specifications. In HSCC, pages 101–110, 2010.

[10] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Formal synthesis of embedded control software:
Application to vehicle management systems. In AIAA
Infotech@Aerospace, 2011. submitted.

[11] B. Yordanov and C. Belta. conPAS2.
http://hyness.bu.edu/conPAS2.html.

