
Incremental Temporal Logic Synthesis of Control Policies for Robots
Interacting with Dynamic Agents

Tichakorn Wongpiromsarn, Alphan Ulusoy, Calin Belta, Emilio Frazzoli and Daniela Rus

Abstract— We consider the synthesis of control policies from
temporal logic specifications for robots that interact with
multiple dynamic environment agents. Each environment agent
is modeled by a Markov chain whereas the robot is modeled by
a finite transition system (in the deterministic case) or Markov
decision process (in the stochastic case). Existing results in
probabilistic verification are adapted to solve the synthesis
problem. To partially address the state explosion issue, we
propose an incremental approach where only a small subset of
environment agents is incorporated in the synthesis procedure
initially and more agents are successively added until we hit the
constraints on computational resources. Our algorithm runs in
an anytime fashion where the probability that the robot satisfies
its specification increases as the algorithm progresses.

I. INTRODUCTION

Temporal logics [1]–[3] have been recently employed to
precisely express complex behaviors of robots. In particular,
given a robot specification expressed as a formula in a
temporal logic, control policies that ensure or maximize the
probability that the robot satisfies the specification can be
automatically synthesized based on exhaustive exploration
of the state space [4]–[12]. Hence, the main limitation of
existing approaches for synthesizing control policies from
temporal logic specifications is almost invariably due to a
combinatorial blow up of the state space, commonly known
as the state explosion problem.

In many applications, robots need to interact with exter-
nal, potentially dynamic agents, including human and other
robots. As a result, the control policy synthesis problem
becomes more computationally complex as it takes into
account more external (i.e., environment) agents. Consider,
as an example, the problem where an autonomous vehicle
needs to go through a pedestrian crossing while there are
multiple pedestrians who are already at or approaching the
crossing. The state space of the complete system (i.e., the
vehicle and all the pedestrians) grows exponentially with the
number of the pedestrians. Hence, given a limited budget of
computational resources, solving the control policy synthesis
problem with respect to temporal logic specifications may not
be feasible when there are a large number of pedestrians.

In this paper, we partially address the aforementioned issue
and propose an algorithm for computing a robot control
policy in an anytime manner. Our algorithm progressively
computes a sequence of control policies, taking into account

T. Wongpiromsarn is with the Singapore-MIT Alliance for Research and
Technology, Singapore 117543, Singapore. nok@smart.mit.edu

A. Ulusoy and C. Belta are with Boston University, Boston, MA, USA
alphan@bu.edu, cbelta@bu.edu

E. Frazzoli and D. Rus are with the Massachusetts Institute of Technology,
Cambridge, MA, USA frazzoli@mit.edu, rus@csail.mit.edu

only a small subset of the environment agents initially and
successively adds more agents to the synthesis procedure in
each iteration until the computational resource constraints
are exceeded. As opposed to existing incremental synthesis
approaches that handle temporal logic specifications where
representative robot states are incrementally added to the
synthesis procedure [8], we consider incrementally adding
representative environment agents instead. Since the size of
the state space grows linearly with the number of states of
the robot but grows exponentially with the number of the
environment agents, our approach potentially better handles
the case with a large number of environment agents.

The main contribution of this paper is twofold. First, we
propose an anytime algorithm for synthesizing a control pol-
icy for a robot interacting with multiple environment agents
with the objective of maximizing the probability for the robot
to satisfy a given temporal logic specification. Deciding if the
resulting probability is acceptable, however, is application
specific and is not in the scope of this paper. Second, we pro-
pose an incremental construction of various objects needed
to be computed during the synthesis procedure. Such an
incremental construction makes our anytime algorithm more
efficient by avoiding unnecessary computation and exploiting
the objects computed in the previous iteration. Experimental
results show that not only we obtain a reasonable solution
much faster, but we are also able to obtain an optimal
solution faster than existing approaches.

II. PRELIMINARIES
We consider systems that comprise multiple (possibly

stochastic) components. In this section, we define the for-
malisms used in this paper to describe such systems and
their desired properties. Throughout the paper, we let X∗,
Xω and X+ denote the set of finite, infinite and nonempty
finite strings, respectively, of a set X .
A. Automata

Definition 1: A deterministic finite automaton (DFA) is a
tuple A = (Q,Σ, δ, qinit, F) where (a) Q is a finite set of
states, (b) Σ is a finite set called alphabet, (c) δ : Q×Σ→ Q
is a transition function, (d) qinit ∈ Q is the initial state, and
(e) F ⊆ Q is a set of final states. We use the relation notation,
q

w−→ q′ to denote δ(q, w) = q′.
Consider a finite string σ = σ1σ2 . . . σn ∈ Σ∗. A run for

σ in a DFA A = (Q,Σ, δ, qinit, F) is a finite sequence of
states q0q1 . . . qn such that q0 = qinit and q0

σ1−→ q1
σ2−→

q2
σ3−→ . . .

σn−→ qn. A run is accepting if qn ∈ F . A string
σ ∈ Σ∗ is accepted by A if there is an accepting run of σ
in A. The language accepted by A, denoted by L(A), is the
set of all accepted strings of A.

B. Linear Temporal Logic
A linear temporal logic (LTL) formula is built up from a

set Π of atomic propositions, the logic connectives ¬, ∨, ∧
and =⇒ and the temporal modal operators # (“next”), �
(“always”), 3 (“eventually”) and U (“until”) and can be
used to reason about a time line. An LTL formula over a set
Π of atomic propositions is inductively defined as

ϕ := True | p | ¬ϕ | ϕ ∨ ϕ | # ϕ | ϕ U ϕ
where p ∈ Π. Other operators can be defined as follows:
ϕ∧ψ = ¬(¬ϕ∨¬ψ), ϕ =⇒ ψ = ¬ϕ∨ψ, 3ϕ = True U ϕ,
and �ϕ = ¬3¬ϕ.

Semantics of LTL: LTL formulas are interpreted on infi-
nite strings over 2Π. Let σ = σ0σ1σ2 . . . where σi ∈ 2Π for
all i ≥ 0. The satisfaction relation |= is defined inductively
on LTL formulas as follows: (a) σ |= True , (b) for an atomic
proposition p ∈ Π, σ |= p if and only if p ∈ σ0, (c) σ |= ¬ϕ
if and only if σ 6|= ϕ, (d) σ |= ϕ1∧ϕ2 if and only if σ |= ϕ1

and σ |= ϕ2, (e) σ |= #ϕ if and only if σ1σ2 . . . |= ϕ,
and (f) σ |= ϕ1 U ϕ2 if and only if there exists j ≥ 0 such
that σjσj+1 . . . |= ϕ2 and for all i such all 0 ≤ i < j,
σiσi+1 . . . |= ϕ1.

More details on LTL can be found, e.g., in [1]–[3].
In this paper, we are particularly interested in a class of

LTL known as co-safety formulas. An important property of
a co-safety formula is that any word satisfying the formula
has a finite good prefix, i.e., a finite prefix that cannot
be extended to violate the formula. Specifically, given an
alphabet Σ, a language L ⊆ Σω is co-safety if and only
if every w ∈ L has a good prefix x ∈ Σ∗ such that
for all y ∈ Σω , we have x · y ∈ L. In general, the
problem of determining whether an LTL formula is co-
safety is PSPACE-complete [13]. However, there is a class
of co-safety formulas, known as syntactically co-safe LTL
formulas, which can be easily characterized. A syntactically
co-safe LTL formula over Π is an LTL formula over Π whose
only temporal operators are #, 3 and U when written in
positive normal form where the negation operator ¬ occurs
only in front of atomic propositions [3], [13]. For example,
properties such as avoiding obstacles before reaching a goal
state can be specified using a syntactically co-safe LTL
formula ¬q U p where p labels goal states and q labels states
with an obstacle. It can be shown that for any syntactically
co-safe formula ϕ, there exists a DFA Aϕ that accepts all
and only words in pref(ϕ), i.e., L(Aϕ) = pref(ϕ), where
pref(ϕ) denote the set of all good prefixes for ϕ [9].

C. Systems and Control Policies
Definition 2: A deterministic finite transition system

(DFTS) is a tuple T = (S,Act,−→, sinit,Π, L) where (a) S
is a finite set of states, (b) Act is a finite set of actions,
(c) −→⊆ S × Act × S is a transition relation such that
for all s ∈ S and α ∈ Act, |Post(s, α)| ≤ 1 where
Post(s, α) = {s′ ∈ S | (s, α, s′) ∈−→}, (d) sinit ∈ S is
the initial state, (e) Π is a set of atomic propositions, and
(f) L : S → 2Π is a labeling function. (s, α, s′) ∈−→ is
denoted by s

α−→ s′. An action α is enabled in state s if
and only if there exists s′ such that s α−→ s′.

Definition 3: A (discrete-time) Markov chain (MC) is a
tuple M = (S,P, ιinit,Π, L) where (a) S, Π and L are
defined as in DFTS, (b) P : S × S → [0, 1] is the
transition probability function such that for any state s ∈ S,∑
s′∈S P(s, s′) = 1, and (c) ιinit : S → [0, 1] is the initial

state distribution satisfying
∑
s∈S ιinit(s) = 1.

Definition 4: A Markov decision process (MDP) is a tuple
M = (S,Act,P, ιinit,Π, L) where S, Act, ιinit, Π and L
are defined as in DFTS and MC and P : S×Act×S → [0, 1]
is the transition probability function such that for any s ∈ S
and α ∈ Act,

∑
s′∈S P(s, α, s′) ∈ {0, 1}. An action α is

enabled in state s if and only if
∑
s′∈S P(s, α, s′) = 1. Let

Act(s) denote the set of enabled actions in s.
Given a complete system as the composition of all its

components, we are interested in computing a control policy
for the system that optimizes certain objectives. We define a
control policy for a system modeled by an MDP as follows.

Definition 5: Let M = (S,Act,P, ιinit,Π, L) be a
Markov decision process. A control policy for M is a
function C : S+ → Act such that C(s0s1 . . . sn) ∈ Act(sn)
for all s0s1 . . . sn ∈ S+.

Let M = (S,Act,P, ιinit,Π, L) be an MDP and C :
S+ → Act be a control policy for M. Given an initial
state s0 of M such that ιinit(s0) > 0, an infinite sequence
rCM = s0s1 . . . on M generated under policy C is called
a path on M if P(si, C(s0s1 . . . si), si+1) > 0 for all i.
The subsequence s0s1 . . . sn where n ≥ 0 is the prefix
of length n of rCM. We define PathsCM and FPathsCM
as the set of all infinite paths of M under policy C and
their finite prefixes, respectively, starting from any state s0

with ιinit(s0) > 0. For s0s1 . . . sn ∈ FPathsCM, we let
PathsCM(s0s1 . . . sn) denote the set of all paths in PathsCM
with the prefix s0s1 . . . sn.

We refer the reader to [3] for a detailed discussion and
to the full version of the paper [14] for a summary of
the probability measure PrCM on the σ−algebra associated
with M. Roughly, given an LTL formula ϕ, one can show
that the set {s0s1 . . . ∈ PathsCM | L(s0)L(s1) . . . |= ϕ} is
measurable. The probability forM to satisfy ϕ under policy
C is then defined as

PrCM(ϕ) = PrCM{s0s1 . . . ∈ PathsCM | L(s0)L(s1) . . . |= ϕ},
where for any s0s1 . . . sn ∈ FPathsCM,

PrCM{PathsCM(s0s1 . . . sn)} =
ιinit(s0)

∏
0≤i<nP(si, C(s0s1 . . . si), si+1).

For a given (possibly noninitial) state s ∈ S, we define
PrCM(s |= ϕ) = PrCMs(ϕ) as the probability for M to
satisfy ϕ under policy C, starting from s. Here, Ms =
(S,Act,P, ιsinit,Π, L) where ιsinit(t) = 1 if s = t and
ιsinit(t) = 0 otherwise.

A control policy essentially resolves all nondeterministic
choices in an MDP and induces a Markov chain MC that
formalizes the behavior of M under control policy C [3]. In
general, MC contains all the states in S+ and hence may
not be finite even thoughM is finite. However, for a special
case where C is memoryless, it can be shown that MC can
be identified with a finite MC.

Definition 6: Let M = (S,Act,P, ιinit,Π, L) be a
Markov decision process. A control policy C on M is
memoryless if and only if for each sequence s0s1 . . . sn
and t0t1 . . . tm ∈ S+ with sn = tm, C(s0s1 . . . sn) =
C(t0t1 . . . tm). A memoryless control policy C can be de-
scribed by a function C : S → Act.

III. PROBLEM FORMULATION
Consider a system that comprises the plant (e.g., the robot)

and N independent environment agents. We assume that at
any time instance, the state of the system, which incorporates
the state of the plant and the environment agents, can be
precisely observed. The system can regulate the state of the
plant but has no control over the state of the environment
agents. Hence, we do not distinguish between a control
policy for the system and a control policy for the plant and
refer to them as a control policy in general, as there is no
confusion that in both cases, only the state of the plant can
be regulated and both the system and the plant can precisely
observe the current state of the complete system. Hence, even
though a control policy may be implemented on the plant, it
may be defined over the state of the complete system.

We assume that each environment agent can be modeled
by a finite Markov chain. Let Mi = (Si,Pi, ιinit,i,Πi, Li)
be the model of the ith environment agent. The plant is
modeled either by a deterministic finite transition system or
by a finite Markov decision process, depending on whether
each control action leads to a deterministic state transition.
We use T to denote the model of the plant and let T =
(S0, Act,−→, sinit,0,Π0, L0) for the case where T is a
DFTS and T = (S0, Act,P0, ιinit,0,Π0, L0) for the case
where T is an MDP. For the simplicity of the presentation,
we assume that for all s ∈ S0, Act(s) 6= ∅. In addition, we
assume that all the components T ,M1,M2, . . . ,MN in the
system make a transition simultaneously, i.e., each of them
makes a transition at every time step.

Example 1: Consider a problem where an autonomous
vehicle (plant) needs to go through a pedestrian crossing
while there are N pedestrians (agents) who are already at or
approaching the crossing. Suppose the road is discretized into
a finite number of cells c0, c2, . . . , cM . The vehicle is mod-
eled by either a DFTS T = (S0, Act,−→, sinit,0,Π0, L0)
or an MDP T = (S0, Act,P0, ιinit,0,Π0, L0) whose state
s ∈ S0 describes the cell occupied by the vehicle and whose
action α ∈ Act corresponds to a motion primitive of the
vehicle (e.g., stop, accelerate, decelerate). If each motion
primitive leads to a deterministic change in the vehicle’s
state, then T is a DFTS. Otherwise, T is an MDP. The
motion of the ith pedestrian is modeled by an MC Mi =
(Si,Pi, ιinit,i,Πi, Li) whose state s ∈ Si describes the cell
occupied by the ith pedestrian. The labeling function Li, i ∈
{0, . . . , N} essentially maps each cell to its label, indexed
by the agent ID, i.e., Li(cj) = cij for all j ∈ {0, . . .M}.

Control Policy Synthesis Problem: Given a system
model described by T ,M1, . . . ,MN and a syntactically co-
safe LTL formula ϕ over Π0 ∪ Π1 ∪ . . . ∪ ΠN , we want to
automatically synthesize a control policy that maximizes the
probability for the system to satisfy ϕ.

Example 2: Consider the autonomous vehicle problem
described in Example 1 and the desired property stating
that the vehicle does not collide with any pedestrian until
it reaches cell cM (e.g., the other side of the pedestrian
crossing). In this case, the specification ϕ is given by ϕ =(
¬
∨
i≥1,j≥0(c0j ∧ cij)

)
U c0M . Using simple logic manipu-

lation, it can be checked that ϕ is a co-safe LTL formula.

IV. CONTROL POLICY SYNTHESIS

We employ existing results in probabilistic verification and
consider the following 3 main steps to solve the control
policy synthesis problem defined in Section III: 1) Compute
the composition of all the system components to obtain the
complete system. 2) Construct the product MDP. 3) Extract
an optimal control policy for the product MDP.

In this section, we describe these steps in more detail
and discuss their connection to our control policy synthesis
problem described in Section III.

A. Parallel Composition of System Components
Assuming that all the components of the system make a

transition simultaneously, we first construct the synchronous
parallel composition of all the components to obtain the com-
plete system. Synchronous parallel composition of different
types of components is defined as follows.

Definition 7: Let M1 = (S1,P1, ιinit,1,Π1, L1) and
M2 = (S2,P2, ιinit,2,Π2, L2) be Markov chains. Their
synchronous parallel composition, denoted by M1||M2, is
the MCM = (S1×S2,P, ιinit,Π1∪Π2, L) where for each
s1, s

′
1 ∈ S1 and s2, s

′
2 ∈ S2,

• P(〈s1, s2〉, 〈s′1, s′2〉) = P1(s1, s
′
1)P2(s2, s

′
2),

• ιinit(〈s1, s2〉) = ιinit,1(s1)ιinit,2(s2), and
• L(〈s1, s2〉) = L(s1) ∪ L(s2).
Definition 8: Let T1 = (S1, Act,−→, sinit,Π1, L1) be

a deterministic finite transition system and M2 =
(S2,P2, ιinit,2,Π2, L2) be a Markov chain. Their syn-
chronous parallel composition, denoted by T1||M2, is the
MDP M = (S1 × S2, Act,P, ιinit,Π1 ∪ Π2, L) where for
each s1, s

′
1 ∈ S1, s2, s

′
2 ∈ S2 and α ∈ Act,

• P(〈s1, s2〉, α, 〈s′1, s′2〉) = P2(s2, s
′
2) if s1

α−→ s′1 and
P(〈s1, s2〉, α, 〈s′1, s′2〉) = 0 otherwise,

• ιinit(〈sinit, s2〉) = ιinit,2(s2) and ιinit(〈s1, s2〉) = 0
for all s1 ∈ S \ {sinit}, and

• L(〈s1, s2〉) = L(s1) ∪ L(s2).
Definition 9: Let M1 = (S1, Act,P1, ιinit,1,Π1, L1)

be a Markov decision process and M2 =
(S2,P2, ιinit,2,Π2, L2) be a Markov chain. Their
synchronous parallel composition, denoted by M1||M2, is
the MDP M = (S1 × S2, Act,P, ιinit,Π1 ∪ Π2, L) where
for each s1, s

′
1 ∈ S1, s2, s

′
2 ∈ S2 and α ∈ Act,

• P(〈s1, s2〉, α, 〈s′1, s′2〉) = P1(s1, α, s
′
1)P2(s2, s

′
2),

• ιinit(〈s1, s2〉) = ιinit,1(s1)ιinit,2(s2), and
• L(〈s1, s2〉) = L(s1) ∪ L(s2).
From the above definitions, our complete system can

be modeled by the MDP T ||M1|| . . . ||MN , regardless of
whether T is a DFTS or an MDP. We denote this MDP by
M = (S,Act,P, ιinit,Π, L).

B. Construction of Product MDP
Let Aϕ = (Q, 2Π, δ, qinit, F) be a DFA that recognizes

the good prefixes of ϕ. Such Aϕ can be automatically
constructed using existing tools [15]. Our next step is to
obtain a finite MDP Mp = (Sp, Actp,Pp, ιp,init, Q, Lp) as
the product of M and Aϕ, defined as follows.

Definition 10: Let M = (S,Act,P, ιinit,Π, L) be an
MDP and let A = (Q, 2Π, δ, qinit, F) be a DFA. The product
of M and A is the MDP Mp = M ⊗ A defined by
Mp = (Sp, Act,Pp, ιp,init,Π, Lp) where Sp = S × Q and
Lp(〈s, q〉) = L(s). Pp is defined as

Pp(〈s, q〉, α, 〈s′, q′〉) =

{
P̃p(〈s, q〉, α, 〈s′, q′〉)

if q′ = δ(q, L(s′))
0 otherwise

,

(1)
where P̃p(〈s, q〉, α, 〈s′, q′〉) = P(s, α, s′). For the rest of
the paper, we refer to P̃p : Sp × Act × Sp → [0, 1] as the
intermediate transition probability function forMp. Finally,

ιp,init(〈s, q〉) =
{
ι̃p,init(〈s, q〉) if q = δ(qinit, L(s))
0 otherwise

,

(2)
where ι̃p,init(〈s, q〉) = ιinit(s). For the rest of the paper, we
refer to ι̃p,init : Sp → [0, 1] as the intermediate initial state
distribution for Mp.

Stepping through the above definition shows that given
a path r

Cp

Mp
= 〈s0, q0〉〈s1, q1〉 . . . on Mp generated under

some control policy Cp, the corresponding path s0s1 . . . on
M generates a word L(s0)L(s1) . . . that satisfies ϕ if and
only if there exists n ≥ 0 such that qn ∈ F (and hence
q0q1 . . . qn is an accepting run on Aϕ), in which case we
say that rCp

Mp
is accepting. Therefore, each accepting path

of Mp uniquely corresponds to a path of M whose word
satisfies ϕ. In addition, a control policy Cp on Mp induces
the corresponding control policy C on M. The details for
generating C from Cp can be found, e.g. in [3], [10].

Based on this argument, our control policy synthesis
problem defined in Section III can be reduced to computing
a control policy for Mp that maximizes the probability of
reaching a state in Bp = {〈s, q〉 ∈ Sp | q ∈ F}.
C. Control Policy Synthesis for Product MDP

For each s ∈ Sp, let xs denote the maximum probability
of reaching a state in Bp, starting from s. Formally, xs =
supC PrCMp

(s |= 3Bp), where, with an abuse of notation,
Bp in 3Bp is a proposition that is satisfied by all states
in Bp. There are two main techniques for computing the
probability xs for each s ∈ Sp: linear programming (LP) and
value iteration. LP-based techniques yield an exact solution
but it typically does not scale as well as value iteration.
On the other hand, value iteration is an iterative numerical
technique. This method works by successively computing the
probability vector (x(k)

s)s∈Sp
for increasing k ≥ 0 such that

limk→∞ x
(k)
s = xs for all s ∈ Sp. Initially, we set x(0)

s = 1
if s ∈ Bp and x(0)

s = 0 otherwise. In the (k + 1)th iteration
where k ≥ 0, we set

x(k+1)
s =

{
1 if s ∈ Bp

max
α∈Actp(s)

∑
t∈Sp

Pp(s, α, t)x
(k)
t otherwise.

(3)

In practice, we terminate the computation and say
that x(k)

s converges when a termination criterion such as
maxs∈Sp

|x(k+1)
s − x

(k)
s | < ε is satisfied for some fixed

(typically very small) threshold ε.
As discussed in [16], [17], decomposition of Mp into

strongly connected components (SCC) can help speed up
value iteration. C ⊆ Sp is an SCC of Mp if there is a
path in Mp between any two states in C and C is maximal
(i.e., there does not exist any C̃ ⊆ Sp such that C ⊂ C̃ and
C̃ is an SCC). The algorithm proposed in [18] allows us to
identify all the SCCs ofMp with time and space complexity
that is linear in the size of Mp.

The SCC-based value iteration works as follows. First,
we set x(0)

s = 1 if s ∈ Bp and x
(0)
s = 0 otherwise.

Next, we identify all the SCCs C
Mp

1 , . . . , C
Mp
m of Mp.

From the definition of SCC, we get that CMp

i ∩ CMp

j =
∅,∀i 6= j and

⋃
i C
Mp

i = Sp. For each SCC C
Mp

i , we define
Succ(CMp

i) ⊆ Sp \C
Mp

i to be the set of all the immediate
successors of states in CMp

i that are not in CMp

i . A (strict)
partial order, ≺Mp

, among C
Mp

1 , . . . , C
Mp
m can be defined

such that CMp

j ≺Mp
C
Mp

i if Succ(CMp

i)∩CMp

j 6= ∅. (Note
that from the definition of SCC and Succ, there cannot be
cyclic dependency among SCCs; hence, such a partial order
can always be defined.)

An important property of SCCs and their partial order that
we will exploit in the computation of the probability vector
(xs)s∈Sp

is that the probability values of states in C
Mp

i

can be affected only by the probability values of states in
C
Mp

i and all CMp

j ≺Mp C
Mp

i . Thus, our next step is to
generate an order OMp among C

Mp

1 , . . . , C
Mp
m such that

C
Mp

i appears before C
Mp

j in OMp if CMp

i ≺Mp
C
Mp

j .
We can then process each SCC separately, according to the
order in OMp , since the probability values of states in CMp

j

that appears after CMp

i in OMp cannot affect the probability
values of states in CMp

i . Processing of SCC C
Mp

i terminates
at the kth iteration where all x(k)

s , s ∈ CMp

i converges. Let
xs be the value to which x

(k)
s converges. When processing

C
Mp

i , we exploit the order in OMp and existing values of
xt for all t ∈ Succ(CMp

i) to determine the set of s ∈ CMp

i

where x(k+1)
s needs to be updated from x

(k)
s . The formula

in (3) with x(k)
t replaced by xt for all t ∈ Succ(CMp

i) can
be used to update those x(k+1)

s . We refer the reader to [16],
[17] for more details.

Note that computation of an order OMp requires O(|Sp|2)
time. Thus, the pre-computation required by the SCC-based
value iteration can be computationally expensive, unless all
the SCCs of Mp and an order OMp are provided a-priori.
As a result, the SCC-based value iteration may require more
computation time than the normal value iteration, if the pre-
computation time is also taken into account.

Once the vector (xs)s∈Sp
is computed, a memoryless

control policy C such that for any s ∈ Sp, PrCM(s |= 3Bp) =
xs can be constructed as follows. For each state s ∈ Sp,
let Actmaxp (s) ⊆ Actp(s) be the set of actions such that

for all α ∈ Actmaxp (s), xs =
∑
t∈Sp

P(s, α, t)xt. For each
s ∈ Sp with xs > 0, let ‖s‖ be the length of a shortest
path from s to a state in Bp, using only actions in Actmaxp .
C(s) ∈ Actmaxp (s) for a state s ∈ Sp \ Bp with xs > 0 is
then chosen such that Pp(s, C(s), t) > 0 for some t ∈ Sp
with ‖t‖ = ‖s‖ − 1. For a state s ∈ Sp with xs = 0 or a
state s ∈ Bp, C(s) ∈ Actp(s) can be chosen arbitrarily.

V. INCREMENTAL COMPUTATION OF CONTROL POLICIES

Automatic synthesis described in the previous section
suffers from the state explosion problem since it requires
constructing the composition T ||M1|| . . . ||MN . In this sec-
tion, we propose an incremental synthesis approach where
we progressively compute a sequence of control policies,
taking into account a small subset of the environment agents
initially and successively add more agents to the synthesis
procedure in each iteration until we hit the computational
constraints. Hence, even though the complete synthesis prob-
lem cannot be solved due to the computational resource
limitation, we can still obtain a reasonable control policy
that takes into account a certain set of environment agents.

A. Overview of Incremental Computation of Control Policies
Initially, we consider a small subset M0 ⊂

{M1, . . . ,MN} of the environment agents. For each
Mi = (Si,Pi, ιinit,i,Πi, Li) 6∈ M0, we consider a
simplified model M̃i that essentially assumes that the
ith environment agent is stationary (i.e., we take into
account their presence but do not consider their full model).
Formally, M̃i = ({si}, P̃i, ι̃init,i,Πi, L̃i) where si ∈ Si
can be chosen arbitrarily, P̃i(si, si) = 1, ι̃init,i(si) = 1 and
L̃i(si) = Li(si). Note that the choice of si ∈ Si may affect
the performance of our incremental synthesis algorithm;
hence, it should be chosen such that it is the most likely state
ofMi. We let M̃0 = {M̃i | Mi ∈ {M1, . . . ,MN}\M0}.

The composition of T , allMi ∈M0 and all M̃j ∈ M̃0 is
then constructed. We let MM0 be the MDP that represents
such composition. Note that since M̃i is typically smaller
thanMi,MM0 is typically much smaller than the composi-
tion of T ,M1, . . . ,MN . We identify all the SCCs ofMM0

and their partial order. Following the steps for synthesizing
a control policy described in Section IV, we construct
MM0

p = MM0 ⊗ Aϕ where Aϕ = (Q, 2Π, δ, qinit, F) is
a DFA that recognizes the good prefixes of ϕ. We also
store the intermediate transition probability function and the
intermediate initial state distribution for MM0

p and denote
these functions by P̃M0

p and ι̃M0
p,init, respectively.

At the end of the initialization period (i.e., the 0th it-
eration), we obtain a control policy CM0 that maximizes
the probability for MM0 to satisfy ϕ. CM0 resolves all
nondeterministic choices in MM0 and induces a Markov
chain, which we denote by MM0

CM0
.

Our algorithm then successively adds more full models
of the rest of the environment agents to the synthesis pro-
cedure at each iteration. In the (k + 1)th iteration where
k ≥ 0, we consider Mk+1 = Mk ∪ {Ml} for some
Ml ∈ {M1, . . . ,MN} \ Mk. Such Ml may be picked
such that the probability for MM0

CM0
||Ml to satisfy ϕ is the

minimum among all Mi ∈ {M1, . . . ,MN} \ Mk. This
probability can be efficiently computed using probabilistic
verification [3]. Other criteria for picking Ml, including
random selection, can also be used and will not affect the
correctness of the algorithm but may affect the computation
time. We let M̃k+1 = M̃k \ {M̃l} and let MMk+1 be the
MDP that represents the composition of T , allMi ∈Mk+1

and all M̃j ∈ M̃k+1. Next, we construct MMk+1
p =

MMk+1 ⊗ Aϕ and obtain a control policy CMk+1 that
maximizes the probability for MMk+1 to satisfy ϕ. Similar
to the initialization step, during the construction ofMMk+1

p ,
we store the intermediate transition probability function and
the intermediate initial state distribution for MMk+1

p and
denote these functions by P̃Mk+1

p and ι̃Mk+1
p,init , respectively.

The process outlined in the previous paragraph terminates
at the Kth iteration where MK = {M1, . . . ,MN} or
when the computational resource constraints are exceeded.
To make this process more efficient, we avoid unnecessary
computation and exploit the objects computed in the previous
iteration. Consider an arbitrary iteration k ≥ 0. In Section
V-B, we show how MMk+1

p , P̃Mk+1
p , and ι̃

Mk+1
p,init can be

incrementally constructed from MMk
p , P̃Mk

p and ι̃Mk
p,init.

Hence, we can avoid computing MMk+1 . In addition, as
previously discussed in Section IV-C, generating an order
of SCCs can be computationally expensive. Hence, we
only compute the SCCs and their order for MM0 and all
Mj ∈ {M1, . . . ,MN} \M0, which are typically small.
Incremental construction of SCCs ofMMk+1 and their order
from those of MMk is considered in Section V-C. (Note
that we do not compute MMk but only maintain its SCCs
and their order, which are incrementally constructed using
the results from the previous iteration.) Finally, Section V-D
describes computation of CMk , using a method adapted from
SCC-based value iteration where we avoid having to identify
the SCCs of MMk

p and their order. Instead, we exploit the
SCCs of MMk and their order, which can be incrementally
constructed using the approach described in Section V-C.

Due to space constraints, we omit the proof here. The
detailed proof can be found in a technical report [14].

B. Incremental Construction of Product MDP
For an iteration k ≥ 0, let Mk+1 = Mk ∪ {Ml}

for some Ml ∈ {M1, . . . ,MN} \ Mk. In general, one
can construct MMk+1

p by first computing MMk+1 , which
requires taking the composition of a DFTS or an MDP with
N MCs, and then constructing MMk+1 ⊗Aϕ. To accelerate
the process of computingMMk+1

p , we exploit the presence of
MMk

p , its intermediate transition probability function P̃Mk
p

and intermediate initial state distribution ι̃Mk
p,init, which are

computed in the previous iteration.
First, note that a state sp of MMk

p is of the form sp =
〈s, q〉 where s = 〈s0, s1, . . . , sN 〉 ∈ S0 × S1 × . . . × SN
and q ∈ Q. For s = 〈s0, s1, . . . , sN 〉 ∈ S0 × S1 × . . . ×
SN , i ∈ {0, . . . , N} and r ∈ Si, we define s|i←r =
〈s0, . . . , si−1, r, si+1, . . . , sN 〉, i.e., s|i←r is obtained by
replacing the ith element of s by r.

Lemma 1: Consider an arbitrary iteration k ≥ 0. Let
Mk+1 = Mk ∪ {Ml} where Ml ∈ {M1, . . . ,MN} \Mk.
Suppose MMk

p = (SMk
p , ActMk

p ,PMk
p , ιMk

p,init,Π
Mk
p , LMk

p)
and Ml = (Sl,Pl, ιinit,l,Πl, Ll). Assuming that for
any i, j ∈ {0, . . . , N}, Πi ∩ Πj = ∅, then MMk+1

p =
(SMk+1
p , Act

Mk+1
p ,PMk+1

p , ι
Mk+1
p,init ,Π

Mk
p , L

Mk+1
p) where

S
Mk+1
p = {〈s|l←r, q〉 | 〈s, q〉 ∈ SMk

p and r ∈ Sl},
Act

Mk+1
p = ActMk

p , ΠMk+1
p = ΠMk

p , and for any
s = 〈s0, . . . , sN 〉, s′ = 〈s′0, . . . , s′N 〉 ∈ S0 × . . . SN and
q, q′ ∈ Q,
• PMk+1

p (〈s, q〉,α,〈s′, q′〉)=0 ifq′ 6=δ(q, LMk+1
p ((〈s′, q′〉)).

Otherwise, PMk+1
p (〈s, q〉, α, 〈s′, q′〉) =

P̃Mk+1
p (〈s, q〉, α, 〈s′, q′〉) where the intermediate

transition probability function is given by
P̃Mk+1
p (〈s, q〉, α, 〈s′, q′〉) =

Pl(sl, s′l)P̃
Mk
p (〈s̃, q〉, α, 〈s̃′, q′〉)

(4)

for any 〈s̃, q〉, 〈s̃′, q′〉 ∈ SMk
p such that s̃|l←sl

= s and
s̃′|l←s′l = s′.

• ι
Mk+1
p,init (〈s, q〉) = 0 if q 6= δ(qinit, L

Mk+1
p (〈s, q〉)).

Otherwise, ιMk+1
p,init (〈s, q〉) = ι̃

Mk+1
p,init (〈s, q〉) where the

intermediate initial state distribution is given by

ι̃
Mk+1
p,init (〈s, q〉) = ιinit,l(sl)ι̃Mk

p,init(〈s̃, q〉) (5)

for any 〈s̃, q〉 ∈ SMk
p such that s̃|l←sl

= s.
• L

Mk+1
p (〈s, q〉) =

(
LMk
p (〈s̃, q〉) \ Ll(s̃l)

)
∪ Ll(sl) for

any 〈s̃, q〉 ∈ SMk
p such that s̃|l←sl

= s.

C. Incremental Construction of SCCs

Consider an arbitrary iteration k ≥ 0. Let l be the index
of the environment agent such that Mk+1 = Mk∪{Ml}. In
this section, we first provide a way to incrementally identify
all the SCCs of MMk+1 from all the SCCs of MMk and
Ml. We conclude the section with incremental construction
of the partial order over the SCCs ofMMk+1 from the partial
order defined over the SCCs of MMk and Ml.

Lemma 2: Let CMk be an SCC of MMk and Cl be an
SCC ofMl where Mk+1 = Mk ∪{Ml}. Suppose either of
the following conditions holds:

Cond 1: |CMk | = 1 and the state in CMk does not have
a self-loop in MMk .

Cond 2: |Cl| = 1 and the state in Cl does not have a
self-loop in Ml.

Then, for any s ∈ CMk and r ∈ Cl, {s|l←r} is an SCC of
MMk+1 . Otherwise, {s|l←r | s ∈ CMk , r ∈ Cl} is an SCC
of MMk+1 .

We say that an SCC CMk+1 of MMk+1 is derived from
〈CMk , Cl〉, where CMk is an SCC of MMk and Cl is an
SCC of Ml, if CMk+1 is constructed from CMk and Cl

according to Lemma 2, i.e., CMk+1 = {s|l←r} for some
s ∈ CMk and r ∈ Cl if Cond 1 or Cond 2 in Lemma 2
holds; otherwise, CMk+1 = {s|l←r | s ∈ CMk , r ∈ Cl}.

Lemma 3: For each SCC CMk+1 ofMMk+1 , there exists
a unique 〈CMk , Cl〉 from which CMk+1 is derived.

Lemma 2 and Lemma 3 provide a way to generate all the
SCCs of MMk+1 from all the SCCs of MMk and Ml as
formally stated below.

Corollary 1: The set of all the SCCs of MMk+1

is given by
{
CMk+1 derived from 〈CMk , Cl〉 |

CMk is an SCC of MMk and Cl is an SCC of Ml

}
.

Finally, in the following lemma, we provide a necessary
condition, based on the partial order over the SCCs ofMMk

and Ml, for the existence of the partial order between two
SCCs of MMk+1 .

Lemma 4: Let CMk+1
1 and CMk+1

2 be SCCs of MMk+1 .
Suppose C

Mk+1
1 is derived from 〈CMk

1 , Cl1〉 and C
Mk+1
2

is derived from 〈CMk
2 , Cl2〉 where CMk

1 and CMk
2 are

SCCs of MMk and Cl1 and Cl2 are SCCs of Ml. Then,
C

Mk+1
1 ≺MMk+1 C

Mk+1
2 only if CMk

1 ≺MMk CMk
2 and

Cl1 ≺Ml
Cl2.

D. Computation of Probability Vector and Control Policy for
MMk

p from SCCs of MMk

Consider an arbitrary iteration k ≥ 0
and the associated product MDP MMk

p =
(SMk
p , ActMk

p ,PMk
p , ιMk

p,init,Π
Mk
p , LMk

p). Similar to
the SCC-based value iteration, we want to generate
a partition {DMk

p,1 , . . . , D
Mk
p,mk
} of SMk

p with a partial
order ≺MMk

p
such that DMk

p,j ≺MMk
p

D
Mk+1
p,i if

Succ(DMk
p,i) ∩ DMk

p,j 6= ∅. However, we relax the condition
that each DMk

p,i , i ∈ {1, . . . ,mk} is an SCC of MMk
p and

only require that if DMk
p,i contains a state in an SCC CMk

p of
MMk

p , then it has to contain all the states in CMk
p . Hence,

DMk
i may include all the states in multiple SCCs of MMk

p .
The following lemmas provide a method for constructing
{DMk

1 , . . . , DMk
mk
} and their partial order from SCCs of

MMk and their partial order, which can be incrementally
constructed as described in Section V-C.

Lemma 5: Let CMk
p be an SCC of MMk

p . Then, there
exists a unique SCC CMk of MMk such that CMk

p ⊆
CMk ×Q.

Lemma 6: Let CMk
p and C̃Mk

p be SCCs of MMk
p . Sup-

pose CMk and C̃Mk are unique SCCs of MMk such
that CMk

p ⊆ CMk × Q and C̃Mk
p ⊆ C̃Mk × Q. Then,

CMk
p ≺MMk

p
C̃Mk
p only if CMk ≺MMk C̃

Mk .

Lemma 7: Let CMk
1 , . . . , CMk

mk
be all the SCCs of MMk

and for each i ∈ {1, . . . ,mk}, let DMk
p,1 = CMk

i ×Q. Then,
{DMk

p,1 , . . . , D
Mk
p,mk
} is a partition of SMk

p . In addition, the
following statements hold for all i, j ∈ {1, . . . ,mk}.
• If DMk

p,i contains a state in an SCC CMk
p ofMMk

p , then
it contains all the states in CMk

p .
• Succ(DMk

p,i) ∩DMk
p,j 6= ∅ only if CMk

j ≺MMk C
Mk
i .

Applying Lemma 7, we generate a partition
{DMk

p,1 , . . . , D
Mk
p,mk
} of SMk

p where for each
i ∈ {1, . . . ,mk}, DMk

p,1 = CMk
i × Q and CMk

1 , . . . , CMk
mk

are all the SCCs of MMk . A partial order ≺MMk
p

over

this partition is defined such that DMk
p,j ≺MMk

p
D

Mk+1
p,i if

CMk
j ≺MMk C

Mk
i . An order OMk

p among DMk
p,1 , . . . , D

Mk
p,mk

can then be derived from the order of CMk
1 , . . . , CMk

mk
,

which can be incrementally constructed based on Lemma 4.
This order OMk

p has the property that the probability values

c4
c3

c0
c1
c2

q0

q1 q2

¬col ∧ ¬c04

c04 col ∧ ¬c04

True True

Fig. 1. (left) The road and its partition used in the autonomous vehicle
example. (right) A DFA Aϕ that recognizes the prefixes of ϕ = ¬col U c04
where col is defined as col =

W
i≥1,j≥0(c0j ∧cij). q1 is the accepting state.

c0

c2

c4

α1

α2

α1

α2

α1

(a)

c1

c2

c3

0.6

0.4

0.2

0.8

1

(b)

c1

c2

c3

0.6

0.4

0.2

0.4

0.4

0.6

0.4

(c)

c0, c1, c1,
c1, c1, c1

c2, c1, c1,
c1, c1, c1

c4, c1, c1,
c1, c1, c1

α1, 1

α2, 1

α1, 1

α2, 1

α1, 1

(d)

Fig. 2. (a) The vehicle model T . (b) The pedestrian models M1, . . . ,M4.
(c) The pedestrian model M5. (d) MM0 .

of states in DMk
p,j that appears after DMk

p,i in OMk
p cannot

affect the probability values of states in DMk
p,i . Hence, we

can follow the SCC-based value iteration and process each
DMk
p,i separately, according to the order in OMk

p to compute
the probability xs for all s ∈ DMk

p,i . Finally, we generate a
memoryless control policy CMk from the probability vector
(xs)s∈SMk

p
as described at the end of Section IV.

VI. EXPERIMENTAL RESULTS

Consider, once again, the autonomous vehicle problem
described in Example 1 and Example 2. Suppose the road is
discretized into 5 cells c0, . . . , c4 where c2 is the pedestrian
crossing area as shown in Figure 1. The vehicle starts in cell
c0 and has to reach cell c4. There are 5 pedestrians, modeled
by MCs M1, . . . ,M5, initially at cell c1. The models of
the vehicle and the pedestrians are shown in Figure 2. A
DFA Aϕ that accepts all and only words in pref(ϕ) where
ϕ =

(
¬
∨
i≥1,j≥0(c0j ∧ cij)

)
U c04 is shown in Figure 1.

First, we apply the LP-based, value iteration and SCC-
based value iteration techniques described in Section IV to
synthesize a control policy that maximizes the probability
that the complete system M = T ||M1||M2|| . . . ||M5

satisfies ϕ. The time required for each step of computation
is summarized in Table I. All the approaches yield the
probability of 0.8 that M satisfies ϕ under the synthesized
control policy. The comparison of the total computation time
required for these different approaches is shown in Figure
3. As discussed in Section IV-C, although the SCC-based
value iteration itself takes significantly less computation time
than the LP-based technique or value iteration, the time
spent in identifying SCCs and their order renders the total
computation time of the SCC-based value iteration more than
the other two approaches.

Technique Product
MDPMp

SCCs & order
of Mp

Prob
vector

Control
policy Total

LP 156.3 - 8.8 6.8 171.9
Value iteration 156.3 - 31.3 6.8 194.4

SCC-based 156.3 71.1 1.9 6.8 236.1

TABLE I
TIME REQUIRED (IN SECONDS) FOR COMPUTING VARIOUS OBJECTS

WHEN THE FULL MODELS OF ALL THE AGENTS ARE CONSIDERED.

Next, we apply the incremental technique where we pro-
gressively compute a sequence of control policies as more
agents are added to the synthesis procedure in each iteration
as described in Section V. We let M0 = ∅, M1 = {M1},
M2 = {M1,M2}, . . ., M6 = {M1, . . . ,M5}, i.e., we
successively add pedestrianM1,M2, . . . ,M5, respectively,
in each iteration. The compositionMM0 is shown in Figure
2(d). Clearly, MM0 has 3 SCCs, each of which contains
exactly 1 state and the partial order among these SCCs
can be simply defined as {(c3, c1, c1, c1, c1, c1)} ≺MM0

{(c2, c1, c1, c1, c1, c1)} ≺MM0 {(c1, c1, c1, c1, c1, c1)}.
MM1 then contains 9 states since the state of the first
pedestrian can now be anything in {c1, c2, c3} (as opposed to
MM0 where the state of the first pedestrian can only be c1).
Applying Lemma 2, we get that MM1 has 9 SCCs, each of
which contains exactly 1 state. The partial order among these
SCCs can be determined using Lemma 4. For 2 ≤ k ≤ 6,
MMk and its SCCs can be determined in a similar way.

We consider 2 cases: (1) no incremental construction
of various objects is employed (i.e., when MMk+1 and
MMk+1

p , k ≥ 0 are computed from scratch in every itera-
tion), and (2) incremental construction of various objects as
described in Section V-B–V-D is applied. For the first case,
we apply the LP-based technique to compute the probability
vector as it has been shown to be the fastest technique when
applied to this problem, taking into account the required pre-
computation, which needs to be done in every iteration. For
both cases, 6 control policies CM0 , . . . , CM5 are generated
forMM0 , . . . ,MM5 , respectively. For each policy CMk , we
compute the probability PrC

Mk

M (ϕ) that the complete system
M satisfies ϕ under policy CMk . (Note that CMk , when
applied to M, is only a function of states of Mi ∈ Mk

since it assumes that the other agents Mj 6∈ Mk are sta-
tionary.) These probabilities are given by PrC

M0

M (ϕ) = 0.08,
PrC

M1

M (ϕ) = 0.46, PrC
M2

M (ϕ) = 0.57, PrC
M3

M (ϕ) = 0.63,
PrC

M4

M (ϕ) = 0.67 and PrC
M5

M (ϕ) = 0.8.
The comparison of the cases where the incremental con-

struction of various objects is not and is employed is shown
in Figure 3. A jump in the probability occurs each time
a new control policy is computed. The time spent during
each step of computation is summarized in Table II for
both cases. Notice that the time required for identifying
the SCCs and their order when the incremental approach
is applied is significantly less than when the full model of
all the pedestrians is considered in one shot since MM0 ,
M1, . . . ,M5, each of which contains 3 states, are much
smaller than Mp, which contains 2187 states.

From Figure 3, our incremental approach is able to obtain
an optimal control policy faster than any other techniques.

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

Computation time (s)

Pr
ob

ab
ilit

y
of

 s
at

is
fy

in
g

th
e

sp
ec

ifi
ca

tio
n

Solving full problem using LP based approach
Solving full problem using value iteration
Solving full problem using SCC based value iteration
Successively adding agents, without incremental
construction of product MDP and SCCs
Successively adding agents, with incremental
construction of product MDP and SCCs

Fig. 3. Comparison of the computation time and the probability for the
system to satisfy the specification computed using different techniques.

Iteration
MDP
MMk

Product
MDPMMk

p

Prob
vector

Control
policy Total

0 0.0064 0.0185 0.0464 0.0084 0.08
1 0.0123 0.0762 0.0203 0.0104 0.12
2 0.0154 0.3383 0.0231 0.0296 0.41
3 0.0357 1.7055 0.0542 0.1503 1.95
4 0.1393 9.1950 0.2155 0.7975 10.35
5 3.1836 152.86 8.2302 6.8938 171.17

Iter-
ation

MDP
MM0

SCCs
& order

Product MDP,
partition&order

Prob
vector

Control
policy Total

0 0.0055 0.0043 0.0203 0.0112 0.0036 0.04
1 - - 0.0726 0.0102 0.0087 0.09
2 - - 0.3239 0.0193 0.0282 0.37
3 - - 1.6036 0.0567 0.1424 1.80
4 - - 8.6955 0.1876 0.7755 9.66
5 - - 139.27 1.6122 7.0125 147.89

TABLE II
TIME REQUIRED (IN SECONDS) FOR COMPUTING VARIOUS OBJECTS IN

EACH ITERATION WHEN INCREMENTAL CONSTRUCTION (TOP) IS NOT

AND (BOTTOM) IS EMPLOYED.

This is mainly due to the efficiency of our incremental
construction of SCCs and their order. In addition, we are
able to obtain a reasonable solution, with 0.67 probability
of satisfying ϕ, within 12 seconds while the maximum
probability of satisfying ϕ is 0.8, which requires 160 seconds
of computation (or 171.9 seconds without employing the
incremental approach).

The advantages provided by the anytime and incremental
nature of our approach may be best evaluated through a larger
example. For example, with 6 pedestrians, the maximum
probability of success is 0.8. Non-incremental approaches
take approximately 2 hours to provide a solution, whereas
our incremental approach takes approximately 1 hour and 20
minutes to reach the optimal solution. However, exploiting
the anytimeness of our approach, we can obtain a solution
within 80 seconds with a 0.67 probability of success. Fur-
thermore, if the 6th pedestrian is detected (or appears) toward
the end of the computations, the non-incremental approach
needs to start from scratch and run for 2 more hours in
addition to the time it spent for the first 5 pedestrians. Our
incremental approach, on the other hand, can efficiently take
the 6th pedestrian into account by exploiting the computation
for the first 5 pedestrians.

VII. CONCLUSIONS

An anytime algorithm for synthesizing a control policy
for a robot interacting with multiple environment agents

with the objective of maximizing the probability for the
robot to satisfy a given temporal logic specification was
proposed. Each environment agent is modeled by a Markov
chain. The robot is modeled by a finite transition system
(in the deterministic case) or Markov decision process (in
the stochastic case). The proposed algorithm progressively
computes a sequence of control policies, taking into account
only a small subset of the environment agents initially and
successively adding more agents to the synthesis procedure
in each iteration until we hit the constraints on computational
resources. Experimental results show that our method pro-
duces a good solution faster than existing approaches. We are
also able to obtain an optimal solution faster than existing
approaches.

REFERENCES

[1] E. A. Emerson, “Temporal and modal logic,” Handbook of Theoretical
Computer Science (Vol. B): Formal Models and Semantics, pp. 995–
1072, 1990.

[2] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems. Springer-Verlag, 1992.

[3] C. Baier and J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[4] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Temporal logic motion
planning for mobile robots,” in IEEE International Conference on
Robotics and Automation, pp. 2020–2025, 2005.

[5] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Where’s Waldo? Sensor-
based temporal logic motion planning,” in IEEE International Confer-
ence on Robotics and Automation, pp. 3116–3121, 2007.

[6] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G. Pappas, “Symbolic planning and control of robot motion [grand
challenges of robotics],” IEEE Robotics & Automation Magazine,
vol. 14, no. 1, pp. 61–70, 2007.

[7] D. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G. Pappas, “Valet
parking without a valet,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2007, pp. 572–577, 2007.

[8] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc. of IEEE Conference
on Decision and Control, 2009.

[9] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 2689–2696, 2010.

[10] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “LTL control in
uncertain environments with probabilistic satisfaction guarantees,” in
IFAC World Congress, 2011.

[11] A. I. Medina Ayala, S. B. Andersson, and C. Belta, “Temporal logic
control in dynamic environments with probabilistic satisfaction guar-
antees,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007, pp. 3108–3113, 2011.

[12] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive
robot control from abstraction and temporal logic specifications,”
Special Issue of the IEEE Robotics & Automation Magazine on Formal
Methods for Robotics and Automation, vol. 18, pp. 65–74, 2011.

[13] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, pp. 291–314, 2001.

[14] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli, and D. Rus,
“Incremental temporal logic synthesis of control policies for robots
interacting with dynamic agents,” tech. rep., 2012. Available at
http://arxiv.org/abs/1203.1180.

[15] T. Latvala, “Efficient model checking of safety properties,” in Proceed-
ings of the 10th international conference on Model checking software,
SPIN’03, (Berlin, Heidelberg), pp. 74–88, Springer-Verlag, 2003.

[16] F. Ciesinski, C. Baier, M. Größer, and J. Klein, “Reduction techniques
for model checking markov decision processes,” in Proceedings of
the 2008 Fifth International Conference on Quantitative Evaluation
of Systems, pp. 45–54, 2008.

[17] M. Kwiatkowska, D. Parker, and H. Qu, “Incremental quantitative ver-
ification for markov decision processes,” in IEEE/IFIP International
Conference on Dependable Systems & Networks, pp. 359–370, 2011.

[18] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, pp. 146–160, 1972.

