
1

Receding Horizon Temporal Logic Planning

Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray

Abstract—We present a methodology for automatic synthesis
of embedded control software that incorporates a class of linear
temporal logic (LTL) specifications sufficient to describe a wide
range of properties including safety, stability, progress, obliga-
tion, response and guarantee. To alleviate the associated computa-
tional complexity of LTL synthesis, we propose a receding horizon
framework that effectively reduces the synthesis problem into a
set of smaller problems. The proposed control structure consists
of a goal generator, a trajectory planner, and a continuous
controller. The goal generator reduces the trajectory generation
problem into a sequence of smaller problems of short horizon
while preserving the desired system-level temporal properties.
Subsequently, in each iteration, the trajectory planner solves
the corresponding short-horizon problem with the currently
observed state as the initial state and generates a feasible
trajectory to be implemented by the continuous controller. Based
on the simulation property, we show that the composition of
the goal generator, trajectory planner and continuous controller
and the corresponding receding horizon framework guarantee
the correctness of the system with respect to its specification
regardless of the environment in which the system operates. In
addition, we present a response mechanism to handle failures
that may occur due to a mismatch between the actual system
and its model. The effectiveness of the proposed technique is
demonstrated through an example of an autonomous vehicle
navigating an urban environment. This example also illustrates
that the system is not only robust with respect to exogenous
disturbances but is also capable of properly handling violation
of the environment assumption that is explicitly stated as part of
the system specification.

Index Terms—Autonomous systems, control architecture, lin-
ear temporal logic, receding horizon control.

I. INTRODUCTION

Design and verification of modern engineered systems with
a tight link between computational and physical elements have
become increasingly complex due to the interleaving between
the high-level logics and the low-level dynamics. Consider,
for example, an autonomous driving problem, particularly
the 2007 DARPA Urban Challenge. In this competition, the
competing vehicles had to navigate, in a fully autonomous
manner, through a partially known urban-like environment
populated with static and dynamic obstacles and perform
different tasks such as road and off-road driving, parking
and visiting certain areas while obeying traffic rules. For the
vehicles to successfully complete the race, they need to be
capable of negotiating an intersection, handling changes in the
environment or operating condition and replanning in response
to such changes. Hence, the high-level logic that governs the
behavior of the vehicles needs to be properly integrated with
the low-level controller that regulates the physical hardware.

T. Wongpiromsarn is with the Singapore-MIT Alliance for Research and
Technology, Singapore 117543, Singapore. nok@smart.mit.edu

U. Topcu and R. M. Murray are with the California Institute of Technology,
Pasadena, CA 91125, USA. {utopcu, murray}@cds.caltech.edu

A schematic of the hierarchical protocol stack implemented
in Team Caltech’s entry in the challenge is shown in Fig. 1.
The stack comprises multiple software modules that are re-
sponsible for reasoning at different levels of abstraction [1],
[2], [3]. Path Follower, for example, computes control signals
based on the continuous model of the vehicle such that the
vehicle closely follows the path generated by Path Planner.
Mission Planner generates a route to complete the mission
based only on the discrete model of the connectivity between
different road segments. Finally, Traffic Planner, implemented
as a set of finite state machines, determines how the vehicle
should navigate this route incorporating the traffic rules. This
paper particularly focuses on the traffic planner and path
follower layers of such protocol stacks.

Protocol stacks on autonomous vehicles constitute an exam-
ple of a broader class of systems, namely embedded control
systems that incorporate continuous and discrete decision
making and interact with the (potentially dynamic and a
priori unknown) environment. These systems are typically very
complex, yet a lot of them are still designed and implemented
in an ad-hoc manner. Even though the individual components
may be formally verified, the whole system is typically verified
only through simulations and tests. Hence, there is no formal
guarantee that the system would work as desired. In fact, a
design bug in Team Caltech’s entry in the Urban Challenge
related to a mismatch in the abstraction of the physical system
used at different levels of the hierarchy had never been
discovered in thousands of hours of our extensive simulations
and over three hundred miles of field testing [4]. In addition,
once the bug was uncovered, it was difficult to modify and
verify the design due to the complexity of the system and
the lack of sufficient time. Although it might be impractical
to simplify such a system, part of the complexity could be
avoided if the system had been designed in a systematic way.

Motivated by the difficulty of modifying and verifying com-
plex embedded control systems, in this paper, we investigate
the following control protocol synthesis problem.
Problem Description: Given a model for the system and its
specification expressed in a formal language, synthesize a
control protocol that, by construction, ensures that the system
satisfies its specification for all valid environment behaviors.

In particular, we consider discrete-time linear time-invariant
system and use linear temporal logic [5], [6], [7] as the
specification language. Environment refers to the factors over
which the system has no control such as obstacles, weather
condition, software and hardware faults and failures, etc. We
assume that the system respects its model and ensure that
an execution described by the model, rather than the actual
execution of the system, satisfies the specification. (Checking
that the model accurately describes the actual system is a
validation problem which is not in the scope of the paper.)

2

Mission Planner

Traffic Planner

Path Planner

Path Follower

Vehicle

route

path planning problem

path

actuation commands response

response

response

response

emergency stop

vehicle state

vehicle & environment states

vehicle & environment states

vehicle & environment states

Fig. 1. A hierarchical protocol stack.

For simplicity, we refer to a model of the system as “system”
for the rest of the paper. The key definitions and notations are
provided in Section II and the previously described synthesis
problem is formally formulated in Section III.
A Solution Approach and Associated Issues: A common
approach to the above synthesis problem is to construct a
finite transition system that serves as an abstract model of the
physical system (which typically has infinitely many states)
[8], [9], [10], [11], [12], [13], [14], [15], [16] Then based on
this abstract model, synthesize a strategy, represented by a
finite state automaton, satisfying the specification. This leads
to a hierarchical, two-layer design with a discrete planner
computing a discrete plan based on the abstract model and
a continuous controller computing control signal based on
the physical model to continuously implement the discrete
plan. Simulations/bisimulations [17] provide a proof that the
continuous execution preserves the correctness of the discrete
plan. We describe this hierarchical approach in detail in
Section IV.

One of the main challenges of this hierarchical approach
is in the abstraction of continuous, infinite-state systems
into equivalent (in the simulation sense) finite state models.
Several abstraction methods have been proposed based on
a fixed abstraction. For example, a continuous-time, time-
invariant model was considered in [9], [10] and [11] for
special cases of fully actuated (ṡ(t) = u(t)), kinematic
(ṡ(t) = A(s(t))u(t)) and piecewise affine (PWA) dynamics,
respectively. A discrete-time, time-invariant model was consid-
ered in [14] and [12] for special cases of PWA and controllable
linear systems, respectively. Reference [13] deals with more
general dynamics by relaxing the bisimulation requirement
and using the notion of approximate simulation [18]. More
recently, a sampling-based method has been proposed for µ-
calculus specifications [8].

Another issue is the computational complexity in the synthe-
sis of finite state automata from a temporal logic specification,
especially in the presence of the dynamic and a priori unknown
environment. Piterman et al. [19] treated this problem as a
two-player game between the system and the environment
and proposed an algorithm for the synthesis of a finite state
automaton that satisfies its specification for any environment
behavior. Although for a certain class of properties, known
as Generalized Reactivity[1], such an automaton can be com-
puted in polynomial time, for practical problems, the rapid

increase in computational complexity is still a limiting factor.
Contributions of the paper: This paper concerns both the
abstraction and the computational complexity issues. First, in
Section V, we propose an approach to automatically com-
pute a finite state abstraction for a discrete-time linear time-
invariant system, taking into account exogenous disturbances.
Our approach differs from those presented in [9], [10], [11],
[12], [13], [14] as we explicitly take into account the presence
of exogenous disturbances. Although exogenous disturbances
have been considered in [20], the state space is partitioned
based on a fixed geometric shape (e.g., a hypercube of fixed
size). Hence, the size the of resulting state space may be
unnecessarily large. To alleviate this shortcoming, we start
with a predicate-based partition and refine it based on the
reachability relation to polytopic regions of different size and
shape. This allows us to control the size of the state space and
identify the set of initial states starting from which a control
law that ensures the satisfaction of the desired properties
cannot be found.

Second, in Section VI, we propose a receding horizon
framework for executing finite state automata while ensuring
system correctness with respect to a given linear temporal logic
specification. This framework essentially reduces the synthesis
problem into a set of smaller problems of shorter horizon.
It relies on the partial order relation among the discrete
states. The partial order plays a role similar to the contraction
constraints [21], [22], which practically induce an order in
the state space, in receding horizon control literature. The
implementation of the receding horizon framework, presented
in Section VII, leads to the decomposition of the discrete
planner into a goal generator and a trajectory planner. The
goal generator reduces the synthesis problem to a sequence of
short-horizon problems while preserving the desired system-
level temporal properties. Subsequently, in each iteration,
the trajectory planner solves the corresponding short-horizon
problem with the currently observed state as the initial state
and generates a feasible trajectory to be implemented by the
continuous controller.

Finally, we present a response mechanism that potentially
increases the robustness of the system with respect to a mis-
match between the actual system and its model and violation
of the environment assumptions. The proposed technique is
demonstrated through an example of an autonomous vehicle
navigating an urban-like environment. This example also il-
lustrates that the resulting hierarchical control structure is not
only robust with respect to exogenous disturbances but also
capable of handling violation of the environment assumptions.

Preliminary versions of this work have partially appeared
in [14], [15], [16].

II. PRELIMINARIES

We use linear temporal logic (LTL) to specify properties
of systems. In this section, we first give formal definitions of
terminology and notations used throughout the paper. Then,
based on these definitions, we briefly describe LTL and some
important classes of LTL formulas.

Definition 1. A system consists of a set V of variables. The

3

domain of V , denoted by dom(V), is the set of valuations of
V . A state of the system is an element v ∈ dom(V).

We describe an execution of a system by an infinite sequence
of its states. Specifically, for a discrete-time system, its exe-
cution σ can be written as σ = v0v1v2 . . . where vt ∈ dom(V)
is the state of the system at time t.

Definition 2. A finite transition system is a tuple T ∶=
(V,V0,→) where V is a finite set of states, V0 ⊆ V is a set
of inital states, and → ⊆ V × V is a transition relation. Given
states νi, νj ∈ V , we write νi → νj if there is a transition from
νi to νj in T.

In this paper, we use ν to represent a state of a finite
transition system and v to represent a state of a general,
possibly non-finite state system.

Definition 3. A partially ordered set (V,⪯) consists of a set V
and a binary relation ⪯ over the set V satisfying the following
properties: for any v1, v2, v3 ∈ V , (a) v1 ⪯ v1; (b) if v1 ⪯ v2

and v2 ⪯ v1, then v1 = v2; and (c) if v1 ⪯ v2 and v2 ⪯ v3, then
v1 ⪯ v3.

Definition 4. An atomic proposition is a statement on system
variables υ that has a unique truth value (True or False) for
a given value of υ. Let v ∈ dom(V) be a state of the system
and p be an atomic proposition. We write v ⊩ p if p is True
at the state v. Otherwise, we write v ⊮ p.

LTL is a powerful specification language for unambiguously
and concisely expressing a wide range of properties of systems
[5], [6], [7]. It is built up from (a) a set of atomic propositions,
(b) the logic connectives: negation (¬), disjunction (∨),
conjunction (∧) and material implication (Ô⇒), and (c) the
temporal modal operators: next (#), always (◻), eventually
(3) and until (U). An LTL formula is defined inductively
as follows: (1) any atomic proposition p is an LTL formula;
and (2) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, #ϕ and
ϕ U ψ are also LTL formulas. Other operators can be defined
as follows: ϕ ∧ ψ ≜ ¬(¬ϕ ∨ ¬ψ), ϕ Ô⇒ ψ ≜ ¬ϕ ∨ ψ,
3ϕ ≜ True U ϕ, and ◻ϕ ≜ ¬3¬ϕ. A propositional formula
is one that does not include temporal operators. Given a set
of LTL formulas ϕ1, . . . , ϕn, their Boolean combination is
an LTL formula formed by joining ϕ1, . . . , ϕn with logic
connectives.
Semantics of LTL: An LTL formula is interpreted over an
infinite sequence of states. Given an execution σ = v0v1v2 . . .
and an LTL formula ϕ, we write vi ⊧ ϕ if ϕ holds at position
i ≥ 0 of σ. The semantics of LTL is defined inductively as
follows: (a) For an atomic proposition p, vi ⊧ p if and only
if (iff) vi ⊩ p; (b) vi ⊧ ¬ϕ iff vi ⊭ ϕ; (c) vi ⊧ ϕ ∨ ψ iff
vi ⊧ ϕ or vi ⊧ ψ; (d) vi ⊧ #ϕ iff vi+1 ⊧ ϕ; and (e) vi ⊧ ϕ U ψ
iff there exists j ≥ i such that vj ⊧ ψ and ∀k ∈ [i, j), vk ⊧ ϕ.
Based on this definition, #ϕ holds at position vi iff ϕ holds at
the next state vi+1, ◻ϕ holds at position i iff ϕ holds at every
position in σ starting at position i, and 3ϕ holds at position
i iff ϕ holds at some position j ≥ i in σ.

Definition 5. An execution σ = v0v1v2 . . . satisfies ϕ, denoted
by σ ⊧ ϕ, if v0 ⊧ ϕ.

Definition 6. Let Σ be the set of all executions of a system.
The system is said to be correct with respect to the specifica-
tion ϕ, written Σ ⊧ ϕ, if all its executions satisfy ϕ, that is,
(Σ ⊧ ϕ) iff (∀σ, (σ ∈ Σ) Ô⇒ (σ ⊧ ϕ)).

Remark 1. Properties typically studied in the control and
hybrid systems domains are safety (usually in the form of
constraints on the system state) and stability (i.e., convergence
to an equilibrium or a desired state). However, these properties
are not rich enough to describe certain desired properties
of, for example, an autonomous vehicle such as staying in
the travel lane unless there is an obstacle blocking the lane,
and visiting a certain area infinitely often. In Section VIII,
we show how such properties can be easily expressed in
LTL. Examples of widely-used LTL formulas include safety,
guarantee, obligation, progress, response and stability.

III. PROBLEM FORMULATION

We consider a system that comprises the physical com-
ponent, which we refer to as the plant, and the (potentially
dynamic and a priori unknown) environment in which the
plant operates. Specifically, we define the system S and the
specification ϕ as follows.
System: Consider a system S with a set V = S∪E of variables
where S and E are disjoint sets that represent, respectively, the
set of plant variables that are regulated by the control protocol
and the set of environment variables whose values may change
arbitrarily throughout an execution. The domain of V is given
by dom(V) = dom(S) × dom(E) and a state of the system
can be written as v = (s, e) where s ∈ dom(S) ⊆ Rn and e ∈
dom(E). We call s the controlled state and e the environment
state.

The controlled state evolves according to the following
discrete-time linear time-invariant state space model: for t ∈
{0,1,2, . . .},

s[t + 1] = As[t] +Buu[t] +Bdd[t],
u[t] ∈ U,d[t] ∈D,s[0] ∈ dom(S), (1)

where U ⊆ Rm is the set of admissible control inputs, D ⊆ Rp
is the set of exogenous disturbances and s[t], u[t] and d[t]
are the controlled state, control signal and disturbance at time
t.

Example 1. Take, for example, a scenario where a robot
needs to navigate an environment populated with (potentially
dynamic) obstacles and explore certain areas of interest. S
typically includes the state (e.g. position and velocity) of the
robot while E typically includes the positions of obstacles
(which are generally not known a priori and may change over
time). The evolution of the controlled state (i.e., the state of
the robot) is governed by its equations of motion.

System Specification: We assume that the specification ϕ is
of the form

ϕ = (ϕinit ∧ ϕe) Ô⇒ ϕs. (2)

where ϕinit specifies system’s initial conditions, ϕe describes
the knowledge about the allowable environment behavior and
the desired behavior of the systems in encoded in ϕs.

4

Let Π be a finite set of atomic propositions of variables from
V . Each of the atomic propositions in Π essentially captures
the states of interest. We assume that the desired behavior ϕs
is an LTL specification built from Π and can be expressed as a
conjunction of safety, guarantee, obligation, progress, response
and stability properties as follows

ϕs = ⋀j∈J1 ◻ps1,j ∧ ⋀j∈J2 3ps2,j ∧
⋀j∈J3(◻ps3,j ∨ 3qs3,j) ∧ ⋀j∈J4 ◻3ps4,j ∧
⋀j∈J5 ◻(ps5,j Ô⇒ 3qs5,j) ∧ ⋀j∈J6 3 ◻ ps6,j ,

(3)

where J1, . . . , J6 are finite sets and for any i and j, psi,j and
qsi,j are propositional formulas of variables from V that are
built from Π.

Furthermore, we assume that ϕinit is a propositional for-
mula built from Π and ϕe can be expressed as a conjunction
of safety and justice requirements as follows

ϕe = ⋀
i∈I1

◻pef,i ∧ ⋀
i∈I2

◻3pes,i, (4)

where pef,i and pes,i are propositional formulas built from Π
and only contain variables from E. Note that we restrict ϕs
and ϕe to be of the form (3) and (4), respectively, for the
clarity of presentation. Our framework only requires that the
specification (2) can be reduced to the form of equation (6),
presented later.

Example 2. Consider the robot motion planning problem
described in Example 1. Suppose the workspace of the robot
is partitioned into cells C1, . . . ,CM and the robot needs to
visit cells C1 and C2 infinitely often. We assume that one of
the cells C1, . . . ,CM may be occupied by an obstacle at any
given time. In addition, this obstacle-occupied cell may change
arbitrarily throughout an execution but infinitely often, C1 and
C2 are not occupied. Let s and o represent the position of the
robot and the obstacle, respectively. In this case,

ϕs = ◻3(s ∈ C1) ∧ ◻3(s ∈ C2) ∧
◻((o ∈ C1) Ô⇒ (s /∈ C1)) ∧
◻((o ∈ C2) Ô⇒ (s /∈ C2)) ∧ . . . ∧
◻((o ∈ CM) Ô⇒ (s /∈ CM)).

Assuming that initially, the robot does not occupy the same
cell as the obstacle,

ϕinit = ((o ∈ C1)Ô⇒ (s /∈ C1)) ∧ ((o ∈ C2)Ô⇒ (s /∈ C2))
∧ . . . ∧ ((o ∈ Cm) Ô⇒ (s /∈ Cm)).

Finally, the assumption on the environment can be expressed
as ϕe = ◻3(o /∈ C1) ∧ ◻3(o /∈ C2).
Control Protocol Synthesis Problem: Given a system S and
specification ϕ, synthesize a control protocol that generates a
sequence of control signals u[0], u[1], . . . ∈ U to the plant to
ensure that starting from any initial condition, ϕ is satisfied
for any sequence of exogenous disturbances d[0], d[1], . . . ∈D
and any sequence of environment states.

Note that the control objective is to ensure that the specifi-
cation ϕ is satisfied for any initial condition and environment,
including those that violate the assumptions ϕinit and ϕe.
However, according to (2), ϕ holds in any execution where
ϕinit or ϕe is violated. Hence, the desired behavior ϕs only
needs to be ensured when ϕinit and ϕe are satisfied.

IV. HIERARCHICAL APPROACH

We take a hierarchical approach to solve the Control Proto-
col Synthesis Problem stated in Section III. First, we construct
a finite transition system D that serves as an abstract model
of S. The problem is then decomposed into (a) synthesizing
a discrete planner that computes a discrete plan satisfying the
specification ϕ based on the abstract, finite-state model D,
and (b) designing a continuous controller that implements the
discrete plan. The success of this abstraction-based approach
thus relies on the following two critical steps:
(a) an abstraction of an infinite-state system into an equivalent

(in the simulation sense) finite state model such that
any discrete plan generated by the discrete planner can
be implemented (i.e., simulated; see, for example, [23]
for the exact definition of simulation) by the continuous
controller, provided that the evolution of the controlled
state satisfies (1), and

(b) synthesis of a discrete planner (i.e., a strategy), represented
by a finite state automaton, that ensures the correctness of
the discrete plan.

In Section V, we present an approach for step (a), assuming
that the physical system is modeled as described in Section III.
For step (b) and ensure the system correctness for any initial
condition and environment behavior, we apply the two-player
game approach presented in [19] to synthesize a discrete plan-
ner as in [9], [14]. We refer the reader to [19] and references
therein for a detailed discussion. In summary, consider a class
of LTL formulas of the form
⎛
⎝
ψinit ∧ ◻ψe ∧ ⋀

i∈If
◻3ψf,i

⎞
⎠
Ô⇒

⎛
⎝⋀i∈Is

◻ψs,i ∧ ⋀
i∈Ig

◻3ψg,i
⎞
⎠
,

(5)
known as Generalized Reactivity[1] (GR[1]) formulas. Here,
ψinit, ψf,i and ψg,i are propositional formulas of variables
from V ; ψe is a Boolean combination of propositional for-
mulas of variables from V and expressions of the form #ψte
where ψte is a propositional formula of variables from E that
describes the assumptions on the transitions of environment
states; and ψs,i is a Boolean combination of propositional
formulas of variables from V and expressions of the form
#ψts where ψts is a propositional formula of variables from V
that describes the constraints on the transitions of controlled
states. The approach presented in [19] allows checking the
realizability of this class of specifications and synthesizing
the corresponding finite state automaton to be performed in
O(∣V ∣3) time where ∣V ∣ is the number of states of the finite
state abstraction D.

Proposition 1. A specification of the form (2)–(4) can be
reduced to a subclass of GR[1] formula of the form

⎛
⎝
ψinit ∧ ◻ψee ⋀

i∈If
◻3ψef,i

⎞
⎠
Ô⇒

⎛
⎝⋀i∈Is

◻ψs,i ∧ ⋀
i∈Ig

◻3ψg,i
⎞
⎠
,

(6)
where ψinit, ψs,i and ψg,i are as defined above and ψee and
ψef,i are propositional formulas of variables from E.

Throughout the paper, we refer to the left hand side and
the right hand side of (6) as the “assumption” part and the
“guarantee” part, respectively. The proof of Proposition 1 is

5

based on the fact that all safety, guarantee, obligation and
response properties are special cases of progress formulas
◻3p, provided that p is allowed to be a past formula [5].
Hence, these properties can be reduced to the guarantee part
of (6) by introducing auxiliary Boolean variables. For example,
the guarantee property 3ps2,j can be reduced to the guarantee
part of (6) by introducing an auxiliary Boolean variable x,
initialized to ps2,j . The formula 3ps2,j can then be equivalently
expressed as a conjunction of ◻((x ∨ ps2,j) Ô⇒ #x),
◻(¬(x ∨ ps2,j) Ô⇒ #(¬x)) and ◻3x. Obligation and
response properties can be reduced to the guarantee part of
(6) using a similar idea. In addition, the stability property
3 ◻ ps6,j can be reduced to the guarantee part of (6) by
introducing an auxiliary Boolean variable y, initialized to
False . The formula 3◻ps6,j can then be equivalently expressed
as a conjunction of ◻(y Ô⇒ ps6,j), ◻(y Ô⇒ #y),
◻(¬y Ô⇒ (#y ∨ #(¬y))) and ◻3y. Note that these
reductions lead to equivalent specifications. However, for the
case of stability 3 ◻ ps6,j , the reduction may lead to an un-
realizable specification even though the original specification
is realizable. Roughly speaking, this is because the auxiliary
Boolean variable y needs to make clairvoyant (prophecy), non-
deterministic decisions. For other properties, the realizability
remains the same after the reduction since the synthesis
algorithm [19] is capable of handling past formulas. The detail
of this discussion is beyond the scope of this paper and we
refer the reader to [19] for more detailed discussion on the
synthesis of GR[1] specification.

In Section VI, we describe a receding horizon framework
that incorporate LTL specification of the form (6) in order to
reduce the computational complexity of the synthesis problem.
Its implementation and a response mechanism that enables the
system to handle certain failures and continue to exhibit a
correct behavior are presented in Section VII.

V. COMPUTING FINITE STATE ABSTRACTION

To construct a finite transition system D from the physical
model S, we first partition dom(S) and dom(E) into finite
sets S and E , respectively, of equivalence classes or cells
such that the partition is proposition preserving [17]. Roughly
speaking, a partition is said to be proposition preserving if for
any atomic proposition π ∈ Π and any states v1 and v2 that
belong to the same cell in the partition, v1 satisfies π iff v2

also satisfies π. We denote the resulting discrete domain of
the system by V = S × E . We call v ∈ dom(V) a continuous
state and ν ∈ V a discrete state of the system. For a discrete
state ν ∈ V , we say that ν satisfies an atomic proposition
π ∈ Π, denoted by ν ⊩d π, iff there exists a continuous state
v contained in the cell labeled by ν such that v satisfies π.
(Due to the proposition preserving property of the partition, the
existence of such a state v ⊩ π implies that all the continuous
states contained in the cell labeled by ν satisfies π.) Given an
infinite sequence of discrete states σd = ν0ν1ν2 . . . and LTL
formula ϕ built from Π, we write νi ⊧d ϕ if ϕ holds at position
i ≥ 0 of σd. With these definitions, the semantics of LTL for
a sequence of discrete states can be derived from the general
semantics of LTL.

Next, we need to determine the transition relations → of D.
In Section V-A, we use a variant of the notion of reachability
that is sufficient to guarantee that if a discrete controlled
state ςj is reachable from ςi, the transition from ςi to ςj can
be continuously implemented or simulated by a continuous
controller. A computational scheme that provides a sufficient
condition for reachability between two discrete controlled
states and subsequently refines the state space partition is also
presented in Sections V-B and V-C.

A. Finite-Time Reachability

Let S = {ς1, ς2, . . . , ςl} be a set of discrete controlled
states. We define a map Ts ∶ dom(S) → S that sends a
continuous controlled state to a discrete controlled state of
its equivalence class. That is, T −1

s (ςi) ⊆ dom(S) is the set
of all the continuous controlled states contained in the cell
labeled by ςi and {T −1

s (ςi), . . . , T −1
s (ςn)} is the partition of

dom(S).

Definition 7. A discrete state ςj is reachable from a dis-
crete state ςi, written ςi ↝ ςj , only if starting from any
point s[0] ∈ T −1

s (ςi), there exists a horizon length N ∈
{0,1, . . .} such that for any sequence of exogenous distur-
bances d[0], d[1], . . . , d[N − 1] ∈ D, there exists a sequence
of control signals u[0], u[1], . . . , u[N − 1] ∈ U that takes the
system (1) to a point s[N] ∈ T −1

s (ςj) satisfying the constraint
s[t] ∈ T −1

s (ςi) ∪ T −1
s (ςj) for all t ∈ {0, . . . ,N}. We write

ςi ςj if ςj is not reachable from ςi.

In general, for two discrete states ςi and ςj , verifying the
reachability relation ςi ↝ ςj is hard because it requires search-
ing for a proper horizon length N . Therefore, we consider
the restricted case where the horizon length is fixed and given
and U , D and T −1

s (ςi), i ∈ {1, . . . , l} are polyhedral sets. Our
approach relies on solving the following problem.

Reachability Problem: Given an initial continuous controlled
state s[0] ∈ Rn, discrete controlled states ςi, ςj ∈ S, the set
of admissible control inputs U ⊆ Rm, the set of exogenous
disturbances D ⊆ Rp, the matrices A, Bu and Bd as in (1), a
horizon length N ≥ 0, determine a sequence of control signals
u[0], u[1], . . . , u[N −1] ∈ Rm such that for all t ∈ {0, . . . ,N −
1} and d[t] ∈D,

s[t + 1] = As[t] +Buu[t] +Bdd[t],
s[t] ∈ T −1

s (ςi), u[t] ∈ U, s[N] ∈ T −1
s (ςj).

(7)

If the above Reachability Problem is feasible, a solution
u[0], . . . , u[N − 1] can be computed by formulating a con-
strained optimal control problem, which can be solved using
off-the-shelf software such as MPT [24], YALMIP [25] or
NTG [26].

B. Verifying the Reachability Relation

Given two discrete controlled states ςi, ςj ∈ S , to deter-
mine whether ςi ↝ ςj , we essentially have to verify that
T −1
s (ςi) ⊆ S0 where S0 is the set of s[0] starting from which

the Reachability Problem defined in Section V-A is feasible.
In this section, we describe how S0 can be computed using
an idea from constrained robust optimal control [27].

6

We assume that U , D and T −1
s (ςi), i ∈ {1, . . . , l} are poly-

hedral sets, i.e., there exist matrices L1, L2 and L3 and vectors
M1, M2 and M3 such that T −1

s (ςi) = {s ∈ Rn ∣ L1s ≤ M1},
U = {u ∈ Rm ∣ L2u ≤ M2} and T −1

s (ςj) = {s ∈ Rn ∣ L3s ≤
M3}. Then, by substituting

s[t] = Ats[0] +
t−1

∑
k=0

(AkBuu[t − 1 − k] +AkBdd[t − 1 − k])

and replacing s[t] ∈ T −1
s (ςi), u[t] ∈ U and s[N] ∈ T −1

s (ςj)
with L1s[t] ≤ M1, L2u[t] ≤ M2 and L3s[N] ≤ M3, respec-
tively, in (7), it can be easily checked that (7) can be rewritten
in the form L [s[0], û]′ ≤M−Gd̂, where û ≜ [u[0]′, . . . , u[N−
1]′]′ ∈ RmN , d̂ ≜ [d[0]′, . . . , d[N−1]′]′ ∈DN and the matrices
L ∈ Rr×n+mN and G ∈ Rr×pN and the vector M ∈ Rr can be
obtained from L1, L2, L3, M1, M2, M3, A, Bu and Bd.

Using properties of polyhedral convexity, we can prove the
following result.

Proposition 2. Suppose D is a closed and bounded polyhedral
subset of Rp and D is the set of all its extreme points. Let
P ≜ {y ∈ Rn+mN ∣ Ly ≤ M − Gd̂,∀d̂ ∈ DN} and S0 be the
projection of P onto its first n coordinates, i.e.,

S0 = {s ∈ Rn ∣ ∃û ∈ RmN s.t. L [s
û

] ≤M −Gd̂,∀d̂ ∈DN} .

Then, the Reachability Problem defined in Section V-A is
feasible for any s[0] ∈ S0.

Using Proposition 2, the problem of computing S0 such
that the Reachability Problem is feasible for any s[0] ∈ S0 is
reduced to computing a projection of the intersection of finite
sets.

C. State Space Discretization and Correctness of the System

In general, given the predicate-based partition of dom(S)
and i, j ∈ {1, . . . , n}, the reachability relation between ςi and
ςj may not be established through the set S0 of s[0] starting
from which the Reachability Problem defined in Section V-A
is feasible. (Due to the constraints on u and a specific choice
of the finite horizon N , T −1

s (ςi) is not necessarily covered by
S0.) To partially alleviate this limitation, we refine the partition
based on the reachability relation to increase the number of
valid discrete state transitions of D. The underlying idea is
that starting with an arbitrary pair of ςi and ςj , we determine
the set S0 of feasible s[0] for the Reachability Problem. Then,
we partition T −1

s (ςi) into T −1
s (ςi) ∩ S0, labeled by ςi,1, and

T −1
s (ςi)/S0, labeled by T −1

s (ςi,2), and obtain the following
reachability relations: ςi,1 ↝ ςj and ςi,2 ςj . This process
is continued until some pre-specified termination criteria are
met.

Table I shows the pseudo-code of the algorithm where a
prescribed lower bound Volmin on the volume of each cell
in the new partition is used as a termination criterion. The
algorithm terminates when no cell can be partitioned such
that the volumes of the two resulting new cells are both
greater than Volmin . Larger Volmin causes the algorithm to
terminate sooner. Other termination criteria such as the maxi-
mum number of iterations can be used as well. Note that the
point at which the algorithm terminates affects the reachability

TABLE I
DISCRETIZATION ALGORITHM

Discretization Algorithm
input: The lower bound on cell volume (Volmin), the parameters

A, Bu, Bd, U , D, N of the Reachability Problem,
and the original partition ({T−1s (ςi) ∣ i ∈ {1, . . . , n}})

output: The new partition sol

sol = {T−1s (ςi) ∣ i ∈ {1, . . . , n}}; IJ = {(i, j) ∣ i, j ∈ {1, . . . , n}};
while (size(IJ) > 0)

Pick arbitrary ςi and ςj where (i, j) ∈ IJ ;
Compute the set S0 of s[0] starting from which the Reachability

Problem is feasible for the previously chosen ςi and ςj ;
if (volume(sol[i] ∩ S0) > Volmin and

volume(sol[i]/S0) > Volmin) then
Replace sol[i] with sol[i] ∩ S0 and append sol[i]/S0 to sol ;
For each k ∈ {1, . . . , size(sol)}, add (i, k), (k, i), (size(sol), k)

and (k, size(sol)) to IJ ;
else

Remove (i, j) from IJ ;
endif

endwhile

between discrete controlled states of the new partition and as a
result, affects the realizability of the specification. Generally,
a coarse partition may render the specification unrealizable
whereas a fine partition increases the computational cost. A
way to decide when to terminate the algorithm is to start with
a coarse partition and keep refining it until the specification is
realizable or the computational resources are exhausted.

It can be shown that the resulting partition of dom(S),
after applying the discretization algorithm, contains at most
Nmax = volume(dom(S))/Volmin cells. Hence, the number
of iterations does not exceed Nmax

2
(Nmax + 1). We denote

the set of all the discrete controlled states corresponding to
the resulting partition of dom(S) by S ′. Since the partition
obtained from the proposed algorithm is a refined partition
of {T −1

s (S1), . . . , T −1
s (Sn)} and V = S × E is proposition

preserving, it is trivial to show that V ′ = S ′ × E is also
proposition preserving. For simplicity of notation, we call S ′
as S and V ′ as V for the rest of the paper.

We define the finite transition system D that serves as the
abstract model of S as: (a) V = S ×E is the set of states of D,
and (b) νi → νj where νi, νj ∈ V , νi = (ςi, εi) and νj = (ςj , εj)
only if ςi ↝ ςj . Using the abstract model D, a discrete planner
that guarantees the satisfaction of ϕ while ensuring that the
discrete plans are restricted to those satisfying the reachability
relations can be automatically constructed using the digital
design synthesis tool [19].

From the stutter invariant property of ϕ [28], the formulation
of the Reachability Problem and the proposition preserving
property of V , it is straightforward to prove the correctness of
the hierarchical approach.

Proposition 3. Let σd = ν0ν1 . . . be an infinite sequence of
discrete states of D where for each natural number k, νk →
νk+1, νk = (ςk, εk), ςk ∈ S is the discrete controlled state and
εk ∈ E is the discrete environment state. If σd ⊧d ϕ, then by
applying a sequence of control signals, each corresponding to
a solution of the Reachability Problem with ςi = ςk and ςj =
ςk+1, the infinite sequence of continuous states σ = v0v1v2 . . .
satisfies ϕ.

7

Remark 2. In verifying the reachability relation, we consider
the restricted case where the horizon length N is fixed and
given. In addition, the discretization algorithm terminates
when a user-defined termination criterion is met. This may
lead to a conservative result, i.e., cell ςj (or part of it) may be
reachable from cell ςi according to Definition 7 even though
the discretization algorithm declares that ςi ςj . Hence, the
resulting partition may render the specification unrealizable
even though there exists a provably correct control protocol.

VI. RECEDING HORIZON FRAMEWORK

The main limitation of the synthesis of finite state automata
from their LTL specifications [19] is the state explosion
problem. In the worst case, the resulting automaton may
contain all the possible states of the system. For example,
if the system has ∣V ∣ variables, each can take any value in
{1, . . . ,M}, then there may be as many as M ∣V ∣ nodes in the
automaton. This type of computational complexity limits the
application of systhesis to relatively small problems.

Similar computational complexity is also encountered in the
area of constrained optimal control. In the controls domain, an
effective and well-established technique to address this issue
is to design and implement control strategies in a receding
horizon manner, i.e., optimize over a shorter horizon, starting
from the currently observed state, implement the initial control
action, move the horizon one step ahead, and re-optimize. This
approach reduces the computational complexity by essentially
solving a sequence of smaller optimization problems, each
with a specific initial condition (as opposed to optimizing
with any initial condition in traditional optimal control). Under
certain conditions, receding horizon control strategies are
known to lead to closed-loop stability [26], [22], [29]. See,
e.g., [30] for a detailed discussion on constrained optimal
control, including finite horizon optimal control and receding
horizon control.

To reduce computational complexity in the synthesis of
finite state automata, we apply an idea similar to the tra-
ditional receding horizon control. First, we observe that in
many applications, it is not necessary to plan for the whole
execution, taking into account all the possible behaviors of the
environment since a state that is very far from the current state
of the system typically does not affect the near future plan.
Consider, for example, the robot motion planning problem
described in Example 2. Suppose C1 or C2 is very far away
from the initial position of the robot. Under certain conditions,
it may be sufficient to only plan out an execution for only a
short segment ahead and implement it in a receding horizon
fashion, i.e., re-compute the plan as the robot moves, starting
from the currently observed state (rather than from all initial
conditions satisfying ϕinit as the original specification (2)
suggests). In this section, we present a sufficient condition
and a receding horizon strategy that allows the synthesis to
be performed on a smaller domain; thus, substantially reduces
the number of states (or nodes) of the automaton while still
ensuring the system correctness with respect to the LTL
specification (2).

We assume that a finite state abstraction D of the system
S has been constructed using, for example, the discretization

ν1

ν2

ν3

ν4

ν5 ν6 ν7

ν8

ν9

ν10

W0

W1

W2W3

W4

Fig. 2. Illustration of the receding horizon framework showing the relation-
ships between the states of V and between the subsets Wi

0, . . . ,W
i
p

algorithm presented in Section V-C. Let V be the finite set of
states of D. We consider a specification of the form (6) since,
from Proposition 1, the specification (2) can be reduced to this
form. Let Φ be a propositional formula of variables from V
such that ψinit Ô⇒ Φ is a tautology, i.e., any state ν ∈ V
that satisfies ψinit also satisfies Φ. For each progress property
◻3ψg,i, i ∈ Ig , suppose there exists a collection of subsets
Wi

0, . . . ,Wi
p of V such that

(a) Wi
0 ∪Wi

1 ∪ . . . ∪Wi
p = V ,

(b) ψg,i is satisfied for any ν ∈Wi
0, i.e., Wi

0 is the set of the
states that constitute the progress of the system, and

(c) Pi ∶= ({Wi
0, . . . ,Wi

p},⪯ψg,i) is a partially ordered set
defined such that Wi

0 ≺ψg,i Wi
j ,∀j /= 0.

Define a map F i ∶ {Wi
0, . . . ,Wi

p} → {Wi
0, . . . ,Wi

p} such that
F i(Wi

j) ≺ψg,i Wi
j ,∀j ≠ 0.

Consider a simple case where {ν1, . . . , ν10} is the set V of
states, ν10 satisfies ψg,i, and the states in V are organized into
5 subsets Wi

0, . . . ,Wi
4. The relationships between the states

in V and the subsets Wi
0, . . . ,Wi

4 are illustrated in Fig. 2.
The partial order may be defined as Wi

0 ≺ Wi
1 ≺ . . . ≺ Wi

4

and the map F i may be defined as F i(Wi
j) =Wi

j−2,∀j ≥ 2,
F i(Wi

1) = Wi
0 and F i(Wi

0) = Wi
0. Suppose ν1 is the initial

state of the system. The key idea of the receding horizon
framework, as described later, is to plan from ν1 to a state
in F i(Wi

4) = Wi
2, rather than planning from the initial state

ν1 to the goal state ν10 in one shot, taking into account all the
possible behaviors of the environment. Once a state in Wi

3,
i.e., ν5 or ν6 is reached, we then replan from that state to
a state in F i(Wi

3) = Wi
1. We repeat this process until ν10

is reached. Under certain sufficient conditions presented later,
this strategy ensures the correctness of the overall execution
of the system.

Formally, with the above definitions of Φ, Wi
0, . . . ,Wi

p and
F i, we define a short-horizon specification Ψi

j associated with
Wi
j for each i ∈ Ig and j ∈ {0, . . . , p} as

Ψi
j ≜ ((ν ∈Wi

j) ∧ Φ ∧ ◻ψee ∧ ⋀k∈If ◻3ψef,k)
Ô⇒ (⋀k∈Is ◻ψs,k ∧ ◻3(ν ∈ F i(Wi

j)) ∧ ◻Φ) ,
(8)

where ν is the state of the system and ψee , ψef,k and ψs,k
are defined as in (6). An automaton Aij satisfying Ψi

j defines
a strategy for going from a state ν1 ∈ Wi

j to a state ν2 ∈
F i(Wi

j) while satisfying the safety requirements ⋀i∈Is ◻ψs,i
and maintaining the invariant Φ. The roles of Pi, F i and Φ
are discussed later in Section VI-A.

Receding Horizon Strategy: For each i ∈ Ig and j ∈
{0, . . . , p}, construct an automaton Aij satisfying Ψi

j . Let
Ig = {i1, . . . , in} and define a corresponding ordered set
(i1, . . . , in). This order only affects the sequence of progress

8

Fig. 3. A graphical description of the receding horizon strategy for a special
case where for each i ∈ Ig ,Wi

j ≺ψg,i W
i
k,∀j < k, F i(Wi

j) =W
i
j−1,∀j > 0

and F i(Wi
0) =W

i
0.

properties ψg,i1 , . . . , ψg,in that the system tries to satisfy and
can be picked arbitrarily without affecting the correctness of
the strategy.
(1) Determine the index j1 such that the current state ν0 ∈
Wi1
j1

. If j1 /= 0, then execute automaton Ai1j1 until the
system reaches a state ν1 ∈ Wi1

k where Wi1
k ≺ψg,i1 W

i1
j1

.
Note that since the union of Wi1

1 , . . . ,Wi1
p is the set

V of all the states, given any ν0, ν1 ∈ V , there exist
j1, k ∈ {0, . . . , p} such that ν0 ∈Wi1

j1
and ν1 ∈Wi1

k .
(2) If the current state ν1 /∈ Wi1

0 , switch to automaton Ai1k
where the index k is chosen such that the current state
ν1 ∈ Wi1

k . Execute Ai1k until the system reaches a state
that is smaller in the partial order Pi1 . Repeat this process
until a state ν2 ∈Wi1

0 is reached.
(3) Switch to automaton Ai2j2 where the index j2 is chosen

such that the current state ν2 ∈Wi2
j2

. Repeat step (2) with
i1 replaced by i2 for the partial order Pi2 until a state
ν3 ∈Wi2

0 is reached. Repeat this process with i2 replaced
by i3, i4, . . . , in until a state νn ∈Win

0 is reached.
(4) Repeat steps (1)–(3).

A graphical description of this strategy is depicted in
Figure 3. Starting from a state ν0, the system executes the au-
tomaton Ai1j1 where the index j1 is chosen such that ν0 ∈ Ai1j1 .
Step (2) ensures that a state ν2 ∈Wi1

0 (i.e., a state satisfying
ψg,i1) is eventually reached. This state ν2 belongs to some
set, say, Wi2

j2
in the partial order Pi2 . The system then works

through this partial order until a state ν3 ∈ Wi2
0 (i.e., a state

satisfying ψg,i2) is reached. This process is repeated until a
state νn satisfying ψg,in is reached. At this point, for each
i ∈ Ig , a state satisfying ψg,i has been visited at least once in
the execution. In addition, the state νn belongs to some set
in the partial order Pi1 and the whole process is repeated,
ensuring that for each i ∈ Ig , a state satisfying ψg,i is visited
infinitely often in the execution.

Theorem 1. Suppose Ψi
j is realizable for each i ∈ Ig , j ∈

{0, . . . , p}. Then the receding horizon strategy ensures that
the system is correct with respect to the specification (6), i.e.,
any execution of the system satisfies (6).

Proof: Consider an arbitrary execution σ of the system
that satisfies the assumption part of (6). We want to show that
the safety properties ψs,i, i ∈ Is, hold throughout the execution

and for each i ∈ Ig , a state satisfying ψg,i is reached infinitely
often.

Let ν0 ∈ V be the initial state of the system and let the index
j1 be such that ν0 ∈Wi1

j1
. From the tautology of ψinitÔ⇒Φ,

it is easy to show that σ satisfies the assumption part of Ψi1
j1

as
defined in (8). Thus, if j1 = 0, then Ai10 ensures that a state ν2

satisfying ψg,i1 is eventually reached and the safety properties
ψs,i, i ∈ Is, hold at every position of σ up to and including
the point where ν2 is reached. Otherwise, j1 /= 0 and Ai1j1
ensures that eventually, a state ν1 ∈Wi1

k where Wi1
k ≺ψg Wi1

j1
is reached, i.e., ν1 is the state of the system at some position l1
of σ. In addition, the invariant Φ and all the safety properties
ψs,i, i ∈ Is, are guaranteed to hold at all the positions of σ
up to and including the position l1. According to the receding
horizon strategy, the planner switches to the automaton Ai1k
at position l1 of σ. Since ν1 ∈ Wi1

k and ν1 satisfies Φ, the
assumption part of Ψi1

k as defined in (8) is satisfied. Using the
previous argument, we get that Ψi1

k ensures that all the safety
properties ψs,i, i ∈ Is, hold at every position of σ starting from
position l1 up to and including position l2 at which the planner
switches the automaton (from Ai1k) and Φ holds at position l2.
By repeating this procedure and using the finiteness of the set
{Wi1

0 , . . . ,Wi1
p } and its partial order condition, eventually the

automaton Ai10 is executed which ensures that σ contains a
state ν2 satisfying ψg,i1 and step (2) terminates.

Applying the previous argument to step (3), we get that step
(3) terminates and before it terminates, the safety properties
ψs,i, i ∈ Is, and the invariant Φ hold throughout the execution
and for each i ∈ Ig , a state satisfying ψg,i has been reached at
least once. By continually repeating steps (1)–(3), the receding
horizon strategy ensures that ψs,i, i ∈ Is, hold throughout the
execution and for each i ∈ Ig , a state satisfying ψg,i is reached
infinitely often.

Remark 3. For each i ∈ Ig and j ∈ {0, . . . , p}, checking
the realizability of Ψi

j requires considering all the initial
conditions in Wi

j satisfying Φ. However, as will be further
discussed in Section VII, when a strategy (i.e., a finite state
automaton satisfying Ψi

j) is to be extracted, only the currently
observed state needs to be considered as the initial condition.
Typically, the realizability can be checked symbolically and
enumeration of states is only required when a strategy needs
to be extracted [19]. Symbolic methods are known to handle
large number of states, in practice, significantly better than
enumeration-based methods. Hence, state explosion usually
occurs in the synthesis (i.e., strategy extraction) stage rather
than the realizability checking stage. By considering only the
currently observed state as the initial state in the synthesis
stage, the receding horizon strategy delays state explosion both
by considering a short-horizon problem and a specific initial
state.

A. Remarks on the Partial Order Pi and the Invariant Φ

Subsets Wi
0, . . . ,Wi

p of V , the corresponding partial order
Pi, the map F i and the propositional formula Φ are at the
core of the receding horizon framework. Roughly speaking,
Pi provides a measure of “closeness” to the states satisfying
ψg,i. Since each short-horizon specification Ψi

j asserts that

9

the system eventually reaches a state that is smaller in the
partial order, it ensures that each automaton Aij brings the
system “closer” to the states satisfying ψg,i. The map F i thus
defines the horizon length for these short-horizon problems.
In general, the size of Aij increases with the horizon length.
However, with too short horizon, the specification Ψi

j may not
be realizable. Since the computational complexity increases
with the size of Aij , a good practice is to choose the shortest
horizon, subject to the realizability of Ψi

j , so that the automa-
ton Aij contains as small number of states as possible.

The propositional formula Φ can be viewed as an invariant
of the system. It adds an assumption on the initial state of
each automaton Aij and is introduced in order to make Ψi

j

realizable. Without Φ, the set of initial states of Aij includes
all states ν ∈ Wi

j . However, starting from some “bad” state
(e.g. unsafe state) in Wi

j , there may not exist a strategy for
the system to satisfy Ψi

j . Φ is essentially used to eliminate the
possibility of starting from these “bad” states.

Computation of these critical elements requires insights for
each problem domain. (See the example presented in Section
VIII for such insights for an autonomous driving problem.)
However, automatic construction of certain elements is pos-
sible, given other elements. For example, given an invariant
Φ and subsets Wi

0, . . . ,Wi
p of V , construction of the partial

order Pi and the map F i can be automated. Such an automatic
construction is discussed in detail in Seciton VII.

On the other hand, given a partially order set Pi and a map
F i, one way to determine Φ is to start with Φ ≡ True and
check the realizability of the resulting Ψi

j . If there exist i ∈ Ig
and j ∈ {0, . . . , p} such that Ψi

j is not realizable, the synthesis
process provides the initial state ν∗ of the system starting from
which there exists a set of moves of the environment such
that the system cannot satisfy Ψi

j . This information provides
guidelines for constructing Φ, i.e., we can add a propositional
formula to Φ that prevents the system from reaching the state
ν∗. This procedure can be repeated until Ψi

j is realizable for
any i ∈ Ig and j ∈ {0, . . . , p} or until Φ excludes all the
possible states, in which case either the original specification is
unrealizable or the proposed receding horizon strategy cannot
be applied with the given partially order set Pi and map F i.
Such an automatic construction of Φ has been implemented in
TuLiP, a Python-based software toolbox for receding horizon
temporal logic planning [31].

In Section VIII, we illustrate a simple computation of
Wi

0, . . . ,Wi
p for a particular system where the notion of

“distance” to the goals can be easily defined. A systematic
approach to construct Wi

0, . . . ,Wi
p for a general system, how-

ever, is subject to current research. Automatic construction of
Φ given Pi and F i and automatic construction of Pi and
F i given Wi

0, . . . ,Wi
p and Φ motivates the following iterative

approach for computing these critical elements, provided that
Wi

0, . . . ,Wi
p are given. First, start with an initial guess for

Φ (e.g. only exclude the unsafe states) and compute the
corresponding Pi and F i. If the resulting Pi and F i render
Ψi
j unrealizable for some i ∈ Ig, j ∈ {0, . . . , p}, we recompute

Φ for this Pi and F i. Such an iterative approach is subject to
current study.

B. The Computational Complexity and Completeness of the
Receding Horizon Strategy

The receding horizon framework essentially reduces the
original synthesis problem to a set of smaller problems. The
partial order relation on {Wi

0, . . . ,Wi
p} induces a directed

graph Gi whose nodes areWi
0, . . . ,Wi

p. In this induced graph,
there is an edge from Wi

0 to itself and to each of the other
nodes. For each j, k ∈ {0, . . . , p} such that j /= 0, there is an
edge from Wi

j to Wi
k if and only if Wi

j ≺ψg,i Wi
k and there

does not exist l ∈ {0, . . . , p} such that Wi
j ≺ψg,i Wi

l ≺ψg,i Wi
k.

Suppose for each j ∈ {0, . . . , p}, there is only one path from
Wi
j to F i(Wi

j) in Gi. Then, we define the horizon length T ij
for a short-horizon specification Ψi

j as the length of the path
from Wi

j to F i(Wi
j) in Gi.

Let NS and NE be the number of possible controlled and
environment states, respectively, for a short-horizon problem
with horizon length 1. Since the environment states for dif-
ferent short-horizon problems may be completely independent
(e.g., whether there is an obstacle in a certain cell may not
depend on whether there is an obstacle in other cells), it
can be shown that the size of a short-horizon problem with
horizon length T can be as large as TMSMT

E . Recall that the
computational complexity of the synthesis problem for GR[1]
formula is O(∣V ∣3) where ∣V ∣ is the size of the state space.
Hence, the computational complexity of solving each short-
horizon problem is O((TMSMT

E)3) where T = maxi,j T ij ≤
p. Since there are the total of (p+1)∣Ig ∣ short-horizon problems
where ∣Ig ∣ is the cardinality of Ig , the overall complexity of
our receding horizon approach is O((p+ 1)∣Ig ∣(TMSMT

E)3).
(Note that each of the short-horizon problems can be solved
independently; thus, our algorithm is easily parallelizable.) In
comparison, solving the original synthesis problem without
applying the receding horizon planning procedure may lead to
the complexity of O((pMSMp

E)3). Thus, if the horizon length
is chosen such that T ≪ p, the receding horizon approach can
significantly reduce the complexity of the synthesis problem.

In Section VIII, we provide an example of a synthesis
problem that may not be solved without the receding horizon
approach due to the size of the state space and illustrate the
application of the receding horizon approach that allows such
problem to be solved without excessive computational power.
Other examples can be found in our previous work [14], [16].

On the other hand, the receding horizon approach is not
complete. Even if there exists a control strategy that satisfies
the original specification in (6), there may not exist an invariant
Φ or a collection of subsets Wi

0, . . . ,Wi
p that allow the

receding horizon strategy to be applied since the corresponding
Ψi
j may not be realizable for all i ∈ Ig and j ∈ {0, . . . , p}.

Remark 4. Traditional receding horizon control is known to
not only reduce computational complexity but also increase
the robustness of the system with respect to exogenous distur-
bances and modeling uncertainties [26]. With disturbances and
modeling uncertainties, an actual execution of the system usu-
ally deviates from a reference trajectory sd. Receding horizon
control allows the current state of the system to be continually
re-evaluated so sd can be adjusted accordingly based on the
externally received reference if the actual execution of the

10

system does not match it. Such an effect may be expected
in our extension of the traditional receding horizon control.
Verifying this property is subject to current study.

VII. IMPLEMENTATION OF THE RECEDING HORIZON
FRAMEWORK

In order to implement the receding horizon strategy, a partial
order Pi and the corresponding map F i need to be defined for
each i ∈ Ig . We now present an implementation of this strategy,
allowing Pi and F i to be automatically determined for each
i ∈ Ig while ensuring that all the short-horizon specifications
Ψi
j , i ∈ Ig, j ∈ {0, . . . , p}, as defined in (8) are realizable.
Given an invariant Φ and subsetsWi

0, . . . ,Wi
p of V for each

i ∈ Ig , we first construct a finite transition system Ti with
the set of states {Wi

0, . . . ,Wi
p}. For each j, k ∈ {0, . . . , p},

there is a transition Wi
j → Wi

k in Ti only if j /= k and the
specification in (8) is realizable with F i(Wi

j) =Wi
k. The finite

transition system Ti can be regarded as an abstraction of the
finite state model D of the physical system S, i.e., a higher-
level abstraction of S.

Suppose Φ is defined such that there exists a path in Ti
from Wi

j to Wi
0 for all i ∈ Ig , j ∈ {1, . . . , p}. (Verifying this

property is basically a graph search problem. If a path does
not exist, Φ can be re-computed using a procedure described
in Section VI-A.) We propose a hierarchical control structure
with three components (cf. Fig. 4): goal generator, trajectory
planner, and continuous controller.
Goal generator: Pick a sequence1 (i1, . . . , in) for the ele-
ments of the unordered set Ig = {i1, . . . , in} and maintain
an index k ∈ {1, . . . , n} throughout the execution. Starting
with k = 1, in each iteration, the goal generator performs the
following tasks.
(a1) Receive the currently observed state of the plant (i.e. the

controlled state) and environment.
(a2) If the abstract state corresponding to the currently ob-

served state belongs to Wik
0 , update k to (k mod n)+1.

(a3) If k was updated in step (a2) or this is the first iteration,
then based on the higher level abstraction Tik of the
physical system S, compute a path from Wik

j to Wik
0

where the index j ∈ {0, . . . , p} is chosen such that the
abstract state corresponding to the currently observed
state belongs to Wik

j .
(a4) If a new path is computed in step (a3), then issue this

path (i.e., a sequence G = Wik
l0
, . . . ,Wik

lm
for some m ∈

{0, . . . , p} where l0, . . . lm ∈ {0, . . . , p}, l0 = j, lm = 0,
lα /= lα′ for any α /= α′, and there exists a transition
Wik
lα
→ Wik

lα+1
in Tik for any α < m) to the trajectory

planner.
The problem of finding a path in Tik from Wik

j to Wik
0 can

be efficiently solved using any graph search algorithm [32],
such as Dijkstra’s and A*. To reduce the original synthesis
problem into a set of problems with shorter horizon, the cost

1As discussed in the description of the receding horizon strategy in
Section VI, this sequence can be picked arbitrarily. In general, its definition
affects a strategy the system chooses to satisfy the specification (6) as it
corresponds to the sequence of progress properties ψg,i1 , . . . , ψg,in the
system tries to satisfy.

Goal
Generator

Trajectory
Planner

Continuous
Controller

Local Control

Plant

∆

noise

“Receding Horizon Control”

environment

environment

ς∗

G

response

response

u

δu

sd

Fig. 4. A system with the control protocol implemented in a receding horizon
manner. Besides the components discussed in this paper, ∆, which captures
uncertainties in the plant model, may be added to make the model more
realistic. Additionally, a local control may be implemented to account for
the effect of noise, disturbances, and unmodeled dynamics. The inputs and
outputs of these two components, not considered in this paper, are drawn in
dashed.

on each edge (Wik
lα
,Wik

lα′
) of the graph built from Tik may

be defined, for example, as an exponential function of the
“distance” between the sets Wik

lα
and Wik

lα′
so that a path with

smaller cost contains segments of shorter “distance”.

Trajectory planner: The trajectory planner maintains the
latest sequence G = Wik

l0
, . . . ,Wik

lm
of goal states received

from the goal generator, an index q ∈ {1, . . . ,m} of the
current goal state in G, a strategy F represented by a finite
state automaton, and the next abstract state ν∗ throughout the
execution. Starting with q = 1 and F and ν∗ initialized as an
empty finite state automaton and a null state, respectively, in
each iteration, the trajectory planner performs the following
tasks.

(b1) Receive the currently observed state of the plant and
environment.

(b2) If a new sequence of goal states is received from the goal
generator, update G, q and ν∗ to this latest sequence of
goal states, 1, and null. Otherwise, if the abstract state
corresponding to the currently observed state belongs to
Wik
lq

, update q and ν∗ to q + 1 and null.
(b3) If ν∗ is null, then based on the abstraction D of the

physical system S, synthesize a strategy that satisfies
the specification in (8) with F i(Wi

j) = Wik
lq

, starting
from the abstract state ν0 corresponding to the currently
observed state, i.e., replace the assumption ν ∈Wi

j with
ν = ν0. Assign this strategy to F and update ν∗ to the
state following the initial state in F based on the current
environment state.

(b4) If the controlled state ς∗ component of ν∗ corresponds to
the currently observed state of the plant, update ν∗ to the
state following ν∗ in F based on the current environment
state.

(b5) If ν∗ was updated in step (b3) or (b4), then issue ς∗ to
the continuous controller.

Continuous controller: The continuous controller maintains
the most recent (abstract) final controlled state ς∗ from the
trajectory planner. In each iteration, it receives the currently
observed state s of the plant. Then, it computes a control signal
u such that the continuous execution of the system eventually

11

reaches the cell of D corresponding to ς∗ while always staying
in the cell corresponding to the abstract controlled state ς∗

and the cell containing s. Essentially, the continuous execution
has to simulate the abstract plan computed by the trajectory
planner. As discussed at the end of Section V-A, such a control
signal can be computed by formulating a constrained optimal
control problem and solved using off-the-shelf software.

From the construction of Ti, i ∈ Ig , it can be verified that the
composition of the goal generator and the trajectory planner
correctly implements the receding horizon strategy described
in Section VI. Roughly speaking, the path G from Wi

j to
Wi

0 computed by the goal generator essentially defines the
partial order Pi and the corresponding map F i. For a set
Wi
lα

/= Wi
0 contained in G, we simply let Wi

lα+1
≺ Wi

lα
and

F i(Wi
lα
) = Wi

lα+1
where Wi

lα+1
immediately follows Wi

lα
in G. In addition, since, by assumption, for any i ∈ Ig and
l ∈ {0, . . . , p}, there exists a path in Ti from Wi

l to Wi
0, it

can be easily verified that the specification Ψi
l is realizable

with F(Wi
l) =Wi

0. Thus, to be consistent with the previously
described receding horizon framework, we assign Wi

l ≻ Wi
0

and F(Wi
l) = Wi

0 for a set Wi
l not contained in G. Note

that such Wi
l that is not in the path G does not affect the

computational complexity of the synthesis algorithm. With this
definition of the partial order Pi and the corresponding map
F i, we can apply Theorem 1 to conclude that the abstract plan
generated by the trajectory planner ensures the correctness of
the system with respect to the specification in (6). In addition,
since the continuous controller simulates this abstract plan, the
continuous execution is guaranteed to preserve the correctness
of the system.

The resulting system is depicted in Fig. 4. Observe how
this design corresponds to the planner-controller subsystem in
Fig. 1 with the continuous controller having similar function-
ality as Path Follower, the trajectory planner having similar
functionality as the composition of Traffic Planner and Path
Planner, the goal generator having similar functionality as
Mission Planner, and each of the sets Wi

1, . . . ,Wi
p being an

entire road. Note that since the system is guaranteed to satisfy
the specification in (6), the desired behavior (i.e. the guarantee
part of (6)) is ensured only when the environment and the
initial condition respect their assumptions. To moderate the
sensitivity to violation of these assumptions, the trajectory
planner may send a response to the goal generator, indicating
the failure of executing the last received sequence of goals as a
consequence of assumption violation. The goal generator can
then remove the problematic transition from the corresponding
finite transition system Ti and re-compute a new sequence G
of goals. This procedure will be illustrated in the example
presented in Section VIII. Similarly, a response may be sent
from the continuous controller to the trajectory planner to
account for the mismatch between the actual system and its
model. In addition, a local control may be added in order to
account for the effect of the noise and unmodeled dynamics
captured by ∆.

VIII. EXAMPLE

As an initial step toward correct-by-construction design of
complex embedded control systems, we consider a simple

autonomous driving problem in an urban-like environment.
The state of the vehicle is the position (x, y) whose evolution
is governed by

ẋ(t) = ux(t) + dx(t) and ẏ(t) = uy(t) + dy(t) (9)

where ux(t) and uy(t) are control signals and dx(t) and
dy(t) are external disturbances at time t. The control effort
is subject the constraints ux(t), uy(t) ∈ [−1,1],∀t ≥ 0. We
assume that the disturbances are bounded by dx(t), dy(t) ∈
[−0.1,0.1],∀t ≥ 0. More complicated dynamics of an om-
nidirectional vehicle is considered in [14] for a simple road
network.

We consider the road network shown in Fig. 5 with 3
intersections, I1, I2 and I3, and 6 roads, R1, R2 (joining
I1 and I3), R3, R4 (joining I2 and I3), R5 (joining I1 and
I3) and R6 (joining I1 and I2). Each of these roads has two
lanes going in opposite directions. The positive and negative
directions for each road are shown in Fig. 5. We partition the
roads and intersections into N = 282 cells (cf. Fig. 5), each
of which may be occupied by an obstacle.

The planner-controller subsystem in Fig. 1 is implemented
in a hierarchical fashion and naturally follows our general
framework for designing a control protocol (Fig. 4). However,
such a subsystem is typically designed by hand and validated
through extensive simulations and field tests. Although a
correct-by-construction approach has been applied in [33], it
is based on building a finite state abstraction of the physical
system and synthesizing a planner that computes a strategy
for the whole execution, taking into account all the possible
behaviors of the environment. As discussed in Section IV,
this approach fails to handle even modest size problems due
to its computational complexity. In this section, we apply the
receding horizon scheme to substantially reduce computational
complexity of correct-by-construction approach.

R1 R2

R4R3
R6

R5

I1

I2

I3
+

-

+

-

+

-

+

-

+
-

W1
0

Wi
j

W2
0Wi

j−1Wi
j+1

Fig. 5. The road network and its partition for the autonomous vehicle
example. The solid (black) lines define the states in the set V of the finite
state model D used by the trajectory planner. Examples of subsets Wi

j are
drawn in dotted (red) rectangles. The stars indicate the positions that need to
be visited infinitely often.

12

A. System Specification

Given the system in (9), we want to design a control pro-
tocol for the vehicle based on the following desired behavior
and assumptions.

Desired Behavior: Following the terminology and notations
used in Section III, the desired behavior ϕs in (2) includes
the following properties.
(P1) Each of the two cells marked by star needs to be visited

infinitely often.
(P2) No collision is allowed, i.e., the vehicle cannot occupy

the same cell as an obstacle.
(P3) The vehicle stays in the right lane unless there is an

obstacle blocking the lane.
(P4) The vehicle can only proceed through an intersection

when the intersection is clear.

Assumptions: We assume that the vehicle starts from an
obstacle-free cell on R1 with at least one obstacle-free cell
adjacent to it. This constitutes the assumption ϕinit on the
initial condition of the system. The environment assumption
ϕe encapsulates the following statements which are assumed
to hold in any execution: (A1) obstacles may not block a
road; (A2) an obstacle is detected before the vehicle gets too
close to it, i.e., an obstacle may not instantly pop up right in
front of the vehicle; (A3) sensing range is limited, i.e., the
vehicle cannot detect an obstacle that is away from it farther
than certain distance. (A4) to make sure that the stay-in-lane
property is achievable, we assume that an obstacle does not
disappear while the vehicle is in its vicinity; (A5) obstacles
may not span more than a certain number of consecutive cells
in the middle of the road; (A6) each of the intersections is
clear infinitely often; and (A7) each of the cells marked by
star and its adjacent cells are not occupied by an obstacle
infinitely often.

In this example, we let this sensing range be 2 cells ahead in
the driving direction. It can be shown [34] that the properties
(P2) and (P3) and the assumptions (A1)–(A4) can be expressed
in the form of the guarantee and the assumption parts of
(6). Property (P4) can be expressed as a safety formula and
property (P1) is a progress property. Finally, assumption (A5)
can be expressed as a safety assumption on the environment
while assumptions (A6) and (A7) can be expressed as justice
requirements on the environment.

B. Correct-by-Construction Control Protocol

We follow the approach described in Section IV. First, we
compute a finite state abstraction D of the system. Following
the scheme in Section V, a state ν of D can be written
as ν = (ς, ρ, o1, o2, . . . , oM) where ς ∈ {1, . . . ,M} and
ρ ∈ {+,−} are the controlled state components of ν, specifying
the cell occupied by the vehicle and the direction of travel,
respectively, and for each i ∈ {1, . . . ,M}, oi ∈ {0,1} indicates
whether the ith cell is occupied by an obstacle. This leads
to the total of 2M2M possible states of D. With the horizon
length N = 12, it can be shown that based on the Reachability
Problem defined in Section V-A, there is a transition ν1 → ν2

in D if the controlled state components of ν1 and ν2 correspond

to adjacent cells (i.e., they share an edge in the road network
of Fig. 5).

Since the only progress property is to visit the two cells
marked by star infinitely often, the set Ig in (6) has two
elements, say, Ig = {1,2}. We let W1

0 be the set of abstract
states whose ς component corresponds to one of these two
cells and define W2

0 similarly for the other cell as shown in
Fig. 5. OtherWi

j is defined such that it includes all the abstract
states whose ς component corresponds to cells across the width
of the road (cf. Fig. 5).

Next, we define Φ such that it excludes states where the
vehicle is not in the travel lane while there is no obstacle
blocking the lane and states where the vehicle is in the same
cell as an obstacle or none the cells adjacent to the vehicle
are obstacle-free. Using this Φ, the specification in (8) is
realizable with F i(Wi

j) =Wi
k where Wi

j and Wi
k correspond

to dotted (red) rectangles in Fig. 5 that are two cells apart (e.g.
F i(Wi

j+1) = Wi
j−1). The finite transition system Ti used by

the goal planner can then be constructed such that there is a
transition Wi

j → Wi
k for any Wi

j and Wi
k that are two cells

apart from each other. With this transition relation, for any
i ∈ Ig and j ∈ {0, . . . , p}, there exists a path in Ti from Wi

j to
Wi

0 and the trajectory planner essentially only has to plan one
step ahead. Thus, the size of finite state automata synthesized
by the trajectory planner to satisfy the specification in (8) is
completely independent of M .

Using JTLV [19], each of these automata has less than 900
states and only takes approximately 1.5 seconds to compute
on a MacBook with a 2 GHz Intel Core 2 Duo processor
and 4 Gb of memory. In addition, with an efficient graph
search algorithm, the computation time requires by the goal
generator is in the order of milliseconds. Hence, with a real-
time implementation of optimization-based control such as
NTG [35] at the continuous controller level, our approach can
be potentially implemented in real-time.

C. Results and Discussions

A simulation result is shown in Fig. 6(a), illustrating a
correct execution of the vehicle even in the presence of
exogenous disturbances when all the assumptions on the
environment and initial condition are satisfied. Note that the
original synthesis problem requires considering 282 cells.
Hence, without the receding horizon strategy, the discretized
state space may contains as many as 1087 states, making this
problem impossible to solve. In fact, JTLV fails to solve this
problem with 4 Gb of memory due to an out of memory error.
With the receding horizon strategy, only 9 of the 282 cells
need to be considered in each synthesis problem. Thus, the
number of possible states in the discretized state space reduces
from 1087 to less than 104, enabling JTLV to easily solve the
problem as previously discussed.

To illustrate the benefit of the response mechanism, we add
a road blockage on R2 to violate the assumption (A1). The
result is shown in Fig. 6(b). Once the vehicle discovers the
road blockage, the trajectory planner cannot find the current
state of the system in the finite state automaton synthesized
from the specification in (8) since the assumption on the
environment is violated. The trajectory planner then informs

13

Fig. 6. Simulation results with (left) no road blockage, (right) a road
blockage on R2. The corresponding movies can be downloaded from
http://www.cds.caltech.edu/tulip

Fig. 7. Simulation result with the presence of disturbances not incorporated
in the control protocol synthesis.

the goal generator of the failure to satisfy the corresponding
specification with the associated pair of Wi

j and F(Wi
j).

Subsequently, the goal generator removes the transition from
Wi
j to F(Wi

j) in Ti and re-computes a path to Wi
0. As a

result, the vehicle continues to exhibit a correct behavior by
making a U-turn and completing the task using a different
path.

The result with exactly the same setup is also shown in
Fig. 7 where exogenous disturbances are not incorporated
in the control protocol synthesis. Once the vehicle overtakes
the obstacles on R1, the continuous controller computes the
sequence of control inputs that is expected to bring the vehicle
back to its travel lane as commanded by the trajectory planner.
But due to the disturbance, the vehicle remains in the opposite
lane. In the meantime, the disturbance also causes the vehicle
to drift slowly to the right. This cycle continues, leading to
violation of the desired property that the vehicle has to stay in
the travel lane unless there is an obstacle blocking the lane.

IX. CONCLUSIONS AND FUTURE WORK

Motivated by the DARPA Urban Challenge, we considered
the control protocol synthesis problem. Specifically, we pro-
posed an approach to automatically synthesizing a control
protocol that ensures system correctness with respect to its
specification expressed in linear temporal logic regardless of
the environment in which the system operates. A receding-
horizon-based framework that allows a computationally com-
plex synthesis problem to be reduced to a set of significantly
smaller problems was presented. An implementation of the
proposed framework leads to a hierarchical, modular design
with a goal generator, a trajectory planner and a continuous
controller. A response mechanism that increases the robust-
ness of the system with respect to a mismatch between the
system and its model and between the actual behavior of the
environment and its assumptions was discussed. By taking
into account the presence of exogenous disturbances in the
synthesis process, the resulting system is provably robust with
respect to bounded exogenous disturbances.

Future work includes further investigation of the robustness
of the receding horizon framework. Specifically, we want to
formally identify the types of properties and faults/failures

that can be correctly handled using the proposed response
mechanism. This type of mechanism has been implemented
on the autonomous vehicle built at Caltech for the DARPA
Urban Challenge for distributed mission and contingency
management [3]. Based on extensive simulations and field
tests, it has been shown to handle many types of failures and
faults at different levels of the system, including inconsistency
of the states of different software modules and hardware
and software failures. Another direction of research is to
study an asynchronous execution of the goal generator, the
trajectory planner and the continuous controller. As described
in this paper, these components are to be executed sequentially.
However, with certain assumptions on the communication
channels, a distributed, asynchronous implementation of these
components may still guarantee the correctness of the system.
Finally, we want to extend the proposed receding horizon
framework to other class of temporal logics that allow better
specification of temporal properties.

ACKNOWLEDGMENTS

This work is partially supported by AFOSR under MURI
grant FA9550-06-1-0303 and the Boeing Corporation. The
authors gratefully acknowledge Hadas Kress-Gazit and Yaniv
Sa’ar for inspiring discussions.

REFERENCES

[1] J. W. Burdick, N. DuToit, A. Howard, C. Looman, J. Ma, R. M. Murray,
and T. Wongpiromsarn, “Sensing, navigation and reasoning technologies
for the DARPA Urban Challenge,” DARPA Urban Challenge Final
Report, Tech. Rep., 2007.

[2] N. E. DuToit, T. Wongpiromsarn, J. W. Burdick, and R. M. Murray,
“Situational reasoning for road driving in an urban environment,” in
International Workshop on Intelligent Vehicle Control Systems, 2008.

[3] T. Wongpiromsarn and R. M. Murray, “Distributed mission and contin-
gency management for the DARPA Urban Challenge,” in International
Workshop on Intelligent Vehicle Control Systems, 2008.

[4] T. Wongpiromsarn, S. Mitra, R. M. Murray, and A. Lamperski, Pe-
riodically Controlled Hybrid Systems: Verifying A Controller for An
Autonomous Vehicle, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009, vol. 5469, ch. 28, pp. 396–410.

[5] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems: Specification. Springer-Verlag, 1992.

[6] M. Huth and M. Ryan, Logic in Computer Science: Modelling and
Reasoning about Systems, 2nd ed. Cambridge University Press, 2004.

[7] E. A. Emerson, “Temporal and modal logic,” in Handbook of theoretical
computer science (vol. B): formal models and semantics. Cambridge,
MA, USA: MIT Press, 1990, pp. 995–1072.

[8] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc. of IEEE Conference
on Decision and Control, 2009.

[9] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Where’s Waldo? Sensor-
based temporal logic motion planning,” in Proc. of IEEE International
Conference on Robotics and Automation, Apr 2007, pp. 3116–3121.

[10] D. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G. Pappas, “Valet
parking without a valet,” in Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2007, pp. 572–577.

[11] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, Feb 2008.

[12] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-
time linear systems,” IEEE Transactions on Automatic Control, vol. 51,
no. 12, pp. 1862–1877, Dec 2006.

[13] A. Girard and G. J. Pappas, “Hierarchical control system design using
approximate simulation,” Automatica, vol. 45, no. 2, pp. 566–571, Feb
2009.

[14] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc. of IEEE
Conference on Decision and Control, 2009.

14

[15] ——, “Automatic synthesis of robust embedded control software,”
in AAAI Spring Symposium on Embedded Reasoning: Intelligence in
Embedded Systems, 2010, pp. 104–111.

[16] ——, “Receding horizon control for temporal logic specifications,”
in Proc. of the 13th International Conference on Hybrid Systems:
Computation and Control, 2010.

[17] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7,
pp. 971–984, Jul 2000.

[18] A. Girard, A. A. Julius, and G. J. Pappas, “Approximate simulation
relations for hybrid systems,” Discrete Event Dynamic Systems, vol. 18,
no. 2, pp. 163–179, Jun 2008.

[19] N. Piterman, A. Pnueli, and Y. Sa’ar, Synthesis of Reactive(1) Designs,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, vol. 3855, ch. 24, pp. 364–380, software available at http://jtlv.
sourceforge.net/.

[20] G. Pola and P. Tabuada, “Symbolic models for nonlinear control systems:
Alternating approximate bisimulations,” SIAM Journal on Control and
Optimization, vol. 48, no. 2, pp. 719–733, 2009.

[21] D. Limon, T. Alamo, and E. Camacho, “Enlarging the domain of
attraction of MPC controllers,” Automatica, vol. 41, no. 4, pp. 629–635,
Apr 2005.

[22] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, pp.
789–814, 2000.

[23] H. Tanner and G. J. Pappas, “Simulation relations for discrete-time linear
systems,” in Proc. of the IFAC World Congress on Automatic Control,
2002, pp. 1302–1307.

[24] M. Kvasnica, P. Grieder, and M. Baotić, “Multi-Parametric Toolbox
(MPT),” 2004, software available at http://control.ee.ethz.ch/∼mpt.

[25] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004, software available at http://control.ee.ethz.ch/∼joloef/yalmip.php.

[26] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam, N. Petit, W. B.
Dunbar, and R. Franz, “Online control customization via optimization-
based control,” in Software-Enabled Control: Information Technology
for Dynamical Systems. Wiley-Interscience, 2002, pp. 149–174, soft-
ware available at http://www.cds.caltech.edu/∼murray/software/2002a/
ntg.html.

[27] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Systems,
ser. Lecture Notes in Control and Information Sciences. Springer-
Verlag, 2003, vol. 290.

[28] D. Peled and T. Wilke, “Stutter-invariant temporal properties are express-
ible without the next-time operator,” Information Processing Letters,
vol. 63, no. 5, pp. 243–246, Sep 1997.

[29] A. Jadbabaie, “Nonlinear receding horizon control: A control Lyapunov
function approach,” Ph.D. dissertation, California Institute of Technol-
ogy, 2000.

[30] G. C. Goodwin, M. M. Seron, and J. A. D. Doná, Constrained Control
and Estimation: An Optimisation Approach. Springer, 2004.

[31] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: A software toolbox for receding horizon temporal logic plan-
ning,” in International Conference on Hybrid Systems: Computation and
Control, 2011.

[32] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice-Hall, 2003.

[33] H. Kress-Gazit and G. J. Pappas, “Automatically synthesizing a planning
and control subsystem for the DARPA Urban Challenge,” in IEEE
International Conference on Automation Science and Engineering, 2008,
pp. 766–771.

[34] T. Wongpiromsarn, “Formal methods for embedded control systems:
Application to an autonomous vehicle,” Ph.D. dissertation, California
Institute of Technology, 2010.

[35] M. B. Milam, K. Mushambi, and R. M. Murray, “A new computational
approach to real-time trajectory generation for constrained mechanical
systems,” in Proc. of IEEE Conference on Decision and Control, 2000,
pp. 845–851.

Tichakorn Wongpiromsarn received the B.S. de-
gree in mechanical engineering from Cornell Univer-
sity and the M.S. and Ph.D. degrees in mechanical
engineering from California Institute of Technology.
She is currently a Postdoctoral Associate at the
Singapore-MIT Alliance for Research and Technol-
ogy. Her research interests span hybrid systems,
distributed control systems, formal methods, trans-
portation networks and situational reasoning and
decision making in complex, dynamic and uncertain
environments.

Ufuk Topcu received his Ph.D. degree in 2008 from
the University of California, Berkeley. He currently
is a postdoctoral scholar of Control and Dynamical
Systems at the California Institute of Technology.
His research is on the analysis, design, and verifica-
tion of networked, information-based systems with
current projects in autonomy, advanced air vehicle
architectures, and energy networks.

Richard M. Murray received the B.S. degree in
Electrical Engineering from California Institute of
Technology in 1985 and the M.S. and Ph.D. degrees
in Electrical Engineering and Computer Sciences
from the University of California, Berkeley, in 1988
and 1991, respectively. He is currently the Thomas
E. and Doris Everhart Professor of Control & Dy-
namical Systems and Bioengineering at Caltech.
Murray’s research is in the application of feedback
and control to networked systems, with applications
in biology and autonomy. Current projects include

verification and validation of distributed embedded systems, analysis of insect
flight control systems, and biological circuit design.

