
Road Pricing for Spreading Peak Travel:

Modeling and Design

Tichakorn Wongpiromsarn*, Nan Xiao†, Keyou You†, Kai Sim†,
Lihua Xie†, Emilio Frazzoli‡, and Daniela Rus‡

*Singapore-MIT Alliance for Research and Technology, Singapore
†Nanyang Technological University, Singapore

‡Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

A case study of the Singapore road network provides empirical evi-
dence that road pricing can significantly affect commuter trip timing be-
haviors. In this paper, we propose a model of trip timing decisions that
reasonably matches the observed commuters’ behaviors. Our model ex-
plicitly captures the difference in individuals’ sensitivity to price, travel
time and early or late arrival at destination. New pricing schemes are
suggested to better spread peak travel and reduce traffic congestion. Sim-
ulation results based on the proposed model are provided in comparison
with the real data for the Singapore case study.

1 INTRODUCTION

Traffic congestion causes significant efficiency losses, wasteful energy consump-
tion and excessive air pollution. This problem arises in many urban areas be-
cause of the continual growth in motorization and the difficulties in increasing
road capacity due to space limitations and budget constraints. As a result,
traffic management that aims at maximizing the efficiency and effectiveness of
road networks without increasing road capacity becomes increasingly crucial. In
the recent decades, the technology in communication, control and information
areas has advanced substantially, making it possible to create intelligent traffic
systems of high efficiency [Orosz et al.(2010)Orosz, Wilson, and Stépán].

Typical strategies that aim at reducing traffic congestion include ramp me-
tering at freeway on-ramps, variable speed limits on freeways and signal tim-
ing plan at signalized intersections [Kurzhanskiy and Varaiya(2010)]. A case
study on the traffic system in California shows that transportation pricing
such as congestion pricing, parking pricing, fuel tax pricing, vehicle miles of



travel fees and emissions fees can better manage the transportation system
to a great extent [Deakin et al.(1996)Deakin, Harvey, Pozdena, and Yarema].
As another example, the Electronic Road Pricing (ERP) system in Singapore
charges motorists when they use certain roads during the peak hours in order
to maintain an optimal speed range for both expressways and arterial roads
[Menon(2000), Olszewski and Xie(2005)]. A comprehensive review of the de-
sign and evaluation of road pricing schemes can be found, for example, in
[Button and Verhoef(1998), Tsekeris and Voß(2009)].

The road pricing system is typically implemented for two main objectives.
First, it is designed to affect the route-choice behaviors. For example, the
charges on expressways motivate the motorists to use alternative, less congested,
arterial roads even though it comes at the cost of extra travel time. Second,
road pricing is enforced on many of the roads in the city area in order to refrain
the motorists from using those roads during the peak hours as no alternative
route with cheaper rate is possible. Hence, a significant portion of the mo-
torists will either turn to public transportation or rearrange their schedules to
avoid entering the city during the peak hours. Previous studies have mainly
focused on the first objective. The notion of Wardrop equilibrium, with travel
time being the main component in the travel cost, has been utilized in order to
find a pricing scheme that moves the user equilibrium (where all travelers mini-
mize their own travel cost) to the system optimum (where the total travel time
in the transportation system is minimized) [Wardrop(1952), Patriksson(1994),
Como et al.(2011)Como, Savla, Acemoglu, Dahleh, and Frazzoli].

In this paper, the latter objective is considered where the trip departure/ar-
rival time, instead of the path choice, is the decision to be made by the mo-
torists. We focus on modeling the effect of road pricing on motorists’ trip tim-
ing behaviors and designing the road pricing strategy to spread peak travel and
to avoid congestion. The multinomial logit (MNL) model [McFadden(1973)],
which is a typical discrete choice model, has been employed, for example, in
[Olszewski and Xie(2005), Chin(1990)] to study the trip re-timing behaviors. In
those studies, however, only the effect of a given pricing scheme was analyzed
and the analysis was only for the case where the motorists have a finite number
of choices of departure/arrival time. In addition, with the MNL model, the
variation in the parameters of the utility function was not explicitly captured.

The main contribution of this paper is twofold. First, we explicitly model
variation in the parameters of the utility or cost function among different mo-
torists. Second, the traffic pricing design that aims at spreading peak travel is
addressed.

The remainder of the paper is organized as follows. A trip timing model
as well as the case study of Singapore road network are presented in the next
section. Section 3 presents a pricing strategy that better spreads peak travel.
Simulation results are provided in Section 4. Finally, Section 5 concludes the
paper and discusses future work.



2 TRIP TIMING AND A MOTIVATIONAL EX-
AMPLE

We consider a particular road R during the period of interest and assume that
each motorist decides his/her arrival time at R by minimizing his/her travel
cost. In general, the travel cost is different for different motorists and depends
on many factors such as one’s preferred arrival time (e.g., worker’s official work
hours or child’s school hours) and arrival time flexibility, travel time, road price
and sensitivity to price (affected by occupational and family status), car occu-
pancy, transportation mode flexibility, etc.

Consider a motorist whose travel cost of arriving at road R at time t is
defined by J(t). As noted earlier, J(t) may be different for different motorists.
The optimal arrival time at road R of this motorist is given by

t∗ = arg min
t
J(t). (1)

Without pricing, there would be a high concentration of demand during the
rush hour, leading to congestion. As a motivating example, consider the Tanjong
Pagar area (Fig. 1), which is located in the heart of the central business district
(CBD) of Singapore. From the locations of the ERP gantries and the directions
of the roads, it can be checked that the motorists get charged the same rate
during the peak hours no matter which road they pick to enter this area.

Fig. 2 shows the traffic flow on Anson Road, which is one of the roads that
can be used to enter the Tanjong Pagar area, during the weekdays of August
2010 as well as the ERP rate. For the morning peak hours (roughly, from
7am to 10:30am), there are 3 noticeable peaks in the flow: at 7:55am, which is
right before the ERP is effective, around 8:45am when the charge is maximum
and at 10:00am, which is right after the ERP become inactive. From this
consistent observation over all the weekdays of August 2010, it is reasonable to
conclude that a significant portion of the motorists who regularly use this road
intentionally adjust their schedule to avoid being charged.

Next we propose a model that explains the behavior observed in Fig. 2. Let
T ⊂ R≥0 denote the domain of t, p(t), t ∈ T denote the road price at time t,
and d(t), t ∈ T denote the expected travel time from the motorist’s origin to
destination, assuming that the motorist arrives at road R at time t. Consider
the case where the travel cost is given by

J(t) = p(t) + Jt(t) + Jd(d(t)), (2)

where Jt : T → R≥0 captures the cost of arriving earlier or later than the
preferred arrival time T and Jd : R≥0 → R≥0 captures the travel time factor of
the travel cost.

As an initial step, we neglect the travel time factor and let

Jd(d) = D,∀d ≥ 0

Jt(t) =
{
b1(T − t) if t ≤ T
b2(t− T ) otherwise ,

(3)



Figure 1: The map of Tanjong Pagar area, Singapore with the locations of the
ERP gantries.

where D ≥ 0 is a constant and b1, b2 ≥ 0 are the parameters that represent the
amount of money the motorist is willing to pay to save a minute of early and
late arrival respectively and may be different for different motorists. Assume
that the preferred arrival time T of each motorist is 8:45 am. Fig. 3 shows the
optimal arrival time for each value of b1 and b2 for the case where p(t) is the
current price implemented on Anson road (cf. Fig. 2).

From Fig. 3, the optimal arrival time is only one of the followings: (a)
7:55am, which is right before the ERP is effective, (b) 8:45am, which is the
preferred arrival time, (c) 10:00am, which is right after the ERP become inactive.
This matches the observed behaviors of the motorists in Fig. 2. However, this
optimal arrival time distribution is not efficient as there is a high concentration
of demand only at 3 different times. Ideally, the optimal arrival times should be
distributed equally among various time slots. In the next sections, we derive a
pricing scheme that results in such an equally distributed optimal arrival times.

3 PRICING STRATEGIES

As a starting point, we consider the cost function in (2) with Jd(d) and Jt(t)
as defined in (3). Assume that the preferred arrival time T is the same for all
motorists. Then, the optimal arrival time t∗ for each motorist with respect to



00:00  02:00  04:00  06:00  08:00  10:00  12:00  14:00  16:00  18:00  20:00  22:000

50

100

150

200

250

300

time of day

 

 
price (x100)
average 5 min volume
5 min volume of each day

Figure 2: Traffic flow on Anson Road during the weekdays of August 2010.
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Figure 3: The b-t∗ relations, i.e., the optimal arrival time t∗ for each value of b1
and b2 for the case where p(t) is the current price implemented on Anson road.

the travel cost J(t) only depends on the pricing scheme p(t) and his/her time-
money trade-off parameters b1, b2. For the simplicity of the presentation, we
consider only motorists who prefer early over late arrival, i.e., b2 � b1, and refer
to b1 simply as b for the rest of this section. Similar results can be derived for
motorists who prefer late over early arrival.

For a given pricing scheme p, we define a map Fp : R≥0 → [0, T ] that takes
the time-money trade-off parameter and returns the maximum optimal arrival



time as follows1

Fp(b) = max
(

arg min
t

(
p(t) + b(T − t) +D

))
. (4)

Given a desired map F : R≥0 → [0, T ], in this section, we derive a pricing
scheme p such that Fp = F . We consider the case where F is a monotonically
increasing step function, e.g., as shown in Fig. 4. In this case, F can be written
as

F (b) =
{
Ti if Bi ≤ b < Bi+1,∀i ∈ {1, . . . , N − 1}
TN if b ≥ BN

, (5)

where N ∈ N, 0 = B1 < B2 < . . . < BN and 0 ≤ T1 < T2 < . . . < TN = T .

B1 B2 B3 B4 B5 B6

T1

T2

T3
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b

F
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)

Figure 4: Example of a desired map F for N = 6.

Proposition 3.1 Consider the case where p(t) is a step function. Define p1, p2, . . . , pN

such that

p(t) =
{
p1 if t ≤ T1

pi if Ti−1 < t ≤ Ti,∀i ∈ {2, . . . , N} (6)

Then, Fp = F if

pi =
i∑

k=2

Bk(Tk − Tk−1) + p1,∀i ∈ {2, . . . , N}. (7)

Proof From (4), (5) and (6), it can be checked that a necessary and sufficient
condition for Fp = F is that for each i, j ∈ {1, . . . , N},

pi + b(T − Ti) ≤ pj + b(T − Tj),∀b ∈ [Bi, Bi+1). (8)
1For certain values of b, J(t) may attain its minimum value at two different values of t.

In this case, we simply assume that the motorist picks the maximum of such optimal arrival
times, i.e., the arrival time that is closest to his desired arrival time, as his/her actual arrival
time.



The case where j = i is trivial so we only need to consider the case where j 6= i.
Since Tj > Ti and Bj > Bi ≥ 0 for all j > i, condition (8) is satisfied if

pi ≤
{
Bi(Ti − Tj) + pj , ∀j < i
Bi+1(Ti − Tj) + pj , ∀j > i

(9)

First, consider the case where j < i. Since Bk > Bi,∀k > i, we get

i∑
k=j+1

Bk(Tk − Tk−1) ≤
i∑

k=j+1

Bi(Tk − Tk−1) = Bi(Ti − Tj).

Adding
∑j

k=2Bk(Tk − Tk−1) + p1 to both sides and using (7), we get

pi =
i∑

k=2

Bk(Tk − Tk−1) + p1

≤ Bi(Ti − Tj) +
j∑

k=2

Bk(Tk − Tk−1) + p1

= Bi(Ti − Tj) + pj

With similar reasoning, for the case where j > i, we have

Bi+1(Tj − Ti) =
j∑

k=i+1

Bi+1(Tk − Tk−1) ≤
j∑

k=i+1

Bk(Tk − Tk−1).

Adding Bi+1(Ti − Tj) +
∑i

k=2Bk(Tk − Tk−1) + p1 to both sides, we get

pi =
i∑

k=2

Bk(Tk − Tk−1) + p1

≤ Bi+1(Ti − Tj) +
j∑

k=2

Bk(Tk − Tk−1) + p1

= Bi+1(Ti − Tj) + pj

Hence, condition (9) is satisfied and we can conclude that Fp = F .

Example 3.1 Consider the case where N = 6, Bi = 0.02(i − 1), Ti = T −
10(N − i), i ∈ {1, . . . , N}. With p1 = 0, according to (7), we get p2 = 0.2,
p3 = 0.6, p4 = 1.2, p5 = 2 and p6 = 3. This pricing scheme as well as the one
currently implemented are shown in Fig. 5.
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Figure 5: Example of the proposed pricing scheme. The range of b associated
with each price is also shown.

4 CASE STUDY OF SINGAPORE

Reconsider the motivational example in Section 2. Assume that b has a Gaussian
distribution with a certain mean µb and variance σb. The set of possible means
and variances of b can be computed from historical data. For example, Fig. 6
shows possible distributions of b based on the ratio between the average number
of motorists at 7:55am and at 8:45am (cf. Fig. 2).

Using the distribution with mean 0.051 (Fig. 6), the map F can be computed
such that the numbers of motorists at times T1, . . . , TN are equal. An example
of such F for N = 6, Ti = T − 10(N − i), i ∈ {1, . . . , N} is shown in Fig. 7. The
corresponding pricing scheme based on Eq (7) is shown in Fig. 8.

The current flow between 7:55am and 8:45am and the results from 10,000,000
Monte Carlo simulations based on the model in (1) with the cost function J(t)
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Figure 6: (left) Possible distributions of b. (right) Distribution of b with mean
0.051
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Figure 7: A map F that leads to the equal number of motorists at times
T1, . . . , T6, assuming that b has a Gaussian distribution with mean 0.051.
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Figure 8: The corresponding pricing scheme based on the map F provided in
Fig. 7.

defined in (2) and (3) are shown in Fig. 9. The actual arrival time is obtained
by adding some Gaussian noise to the optimal arrival time t∗.

5 CONCLUSIONS AND FUTURE WORK

We provided a case study of Singapore road network that shows that road
pricing could significantly affect commuter trip timing behaviors. Based on
this empirical evidence, we proposed a model that describes the commuter trip
timing decisions. The analysis and simulation results showed that the proposed
model reasonably matches the observed behaviors. In addition, we proposed
a pricing scheme based on the proposed model in order to better spread peak
travel and reduce traffic congestion. Simulation results showed that uniform
distribution of arrival times among motorists who regularly use the road during
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Figure 9: The current flow between 7:55am and 8:45am and the results obtained
from 10,000,000 Monte Carlo simulations using the model in (1) with the current
price and the adjusted price based on Eq (7).

the peak hours could be obtained.
Future work includes considering multiple roads and incorporating the route

choice behavior in the model. We also plan to take into account stochasticity in
the actual arrival time as the motorist may not arrive exactly at his/her optimal
arrival time. In addition, we are interested in incorporating the travel time factor
in the model. The average travel time for different origins and destinations as
well as the portion of motorists with those origin and destination pairs can be
estimated from the data obtained from all the taxi trips that went through a
road of interest. We also plan to introduce stochasticity in the preferred arrival
time T (which depends, for example, on individuals’ work hours).
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