
Verification of Periodically Controlled Hybrid
Systems: Application to An Autonomous Vehicle

TICHAKORN WONGPIROMSARN

California Institute of Technology

SAYAN MITRA

University of Illinois at Urbana Champaign

and

ANDREW LAMPERSKI and RICHARD M. MURRAY

California Institute of Technology

This paper introduces Periodically Controlled Hybrid Automata (PCHA) for modular specification

of embedded control systems. In a PCHA, control actions that change the control input to the
plant occur roughly periodically, while other actions that update the state of the controller may

occur in the interim. Such actions could model, for example, sensor updates and information

received from higher-level planning modules that change the set-point of the controller. Based
on periodicity and subtangential conditions, a new sufficient condition for verifying invariant

properties of PCHAs is presented. For PCHAs with polynomial continuous vector fields, it is
possible to check these conditions automatically using, for example, quantifier elimination or sum

of squares decomposition. We examine the feasibility of this automatic approach on a small

example. The proposed technique is also used to manually verify safety and progress properties
of a fairly complex planner-controller subsystem of an autonomous ground vehicle. Geometric

properties of planner-generated paths are derived which guarantee that such paths can be safely

followed by the controller.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Veri-

fication—Correctness proofs; Formal methods; F.3.1 [Logics and Meanings of Programs]:

Specifying and Verifying and Reasoning about Programs—Invariants; Specification techniques;
I.2.9 [Artificial Intelligence]: Robotics—Autonomous vehicles

General Terms: Verification

Additional Key Words and Phrases: Embedded systems, Invariants

1. INTRODUCTION

Subtle design bugs in embedded systems may arise from the unforeseen interactions
among the computing, the communication, and the control subsystems. Consider,
for example, the embedded computing system of the autonomous vehicle Alice built
at Caltech. Alice successfully accomplished two of the three tasks at the National
Qualifying Event (NQE) of the 2007 DARPA Urban Challenge [Burdick et al.

Author’s address: T. Wongpiromsarn, MC 104-44, 1200 E. California Blvd., Pasadena, CA 91125.

This work is partially supported by AFOSR through the MURI program.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–25.

2007; Wongpiromsarn and Murray 2008; DuToit et al. 2008]. During the third
task, which involved making left-turns while merging into traffic, its behavior was
unsafe and almost led to a collision. Alice was stuck at the corner of a sharp turn
dangerously stuttering in the middle of an intersection. It was later diagnosed
that this behavior was caused by bad interactions between the reactive obstacle
avoidance subsystem (ROA) and the relatively slowly reacting path planner . The
planner incrementally generates a sequence of waypoints based on the road map,
obstacles, and the mission goals. The ROA is designed to rapidly decelerate the
vehicle when it gets too close to an obstacle or when the deviation from the planned
path gets too large. Finally, to protect the vehicle steering system, Alice’s low-level
controller limits the rate of steering at low speeds. Thus, accelerating from a low
speed, if the planner produces a path with a sharp left turn, the controller is unable
to execute the turn closely. Alice deviates from the path; the ROA activates and
slows it down. This cycle continues leading to stuttering.

The above example illustrates how design of reliable embedded systems inherits
the difficulties involved in designing both control systems and distributed (con-
current) computing systems. The described design bug manifests as undesirable
behavior only under a very specific set of conditions and only when the controller,
the ROA, and the vehicle interact in a very specific manner. Therefore, such a bug
had never been discovered in thousands of hours of our extensive simulations and
over three hundred miles of field testing. Formal methods provide tools and tech-
niques for uncovering such subtle design bugs and mathematically prove correctness
of designs. More recently, formal techniques have also been used to automatically
generate controllers that are correct by construction [Kloetzer and Belta 2006;
Fainekos et al. 2009].

The hybrid system formalism [Alur et al. 1995; Kaynar et al. 2005] provides a
rich mathematical language for specifying embedded systems where computing and
control components interact with physical processes. The algorithmic verification
problem for hybrid systems with general dynamics is known to be computationally
hard [Henzinger et al. 1995]. Restricted subclasses that are amenable to algorith-
mic analysis have been identified, such as the rectangular-initialized hybrid au-
tomata [Henzinger et al. 1995], o-minimal hybrid automata [Lafferriere et al. 1999],
and more recently planar [Prabhakar et al. 2008] and STORMED [Vladimerou et al.
2008] hybrid automata. Although these restricted subclasses improve our under-
standing of the decidability frontier for hybrid systems, the imposed restrictions
are artificial, i.e., they are not representative of structures that arise in real world
systems. For example, initialized hybrid automata require the continuous state of
the system to be reset every time the automaton enters a new mode.

While real world embedded control systems are large and complex, they are also
implemented on hardware platforms that have, at the fundamental level, similar
architectures. Hence, hybrid automaton models that capture the commonality in
such systems have more structure than general hybrid automata [Alur et al. 1995].
With the motivation of abstractly capturing a common design pattern in embedded
control systems, such as Alice, and other motion control systems [Mitra et al. 2003],
in this paper we study a new subclass of hybrid automata.

Two main contributions of this paper are the following: First, we define a class of

hybrid control systems in which certain control actions occur roughly periodically.
Each control action sets the controlling output that drives the underlying physical
process which we refer to as the plant. In the interval between two control actions,
the state of the plant evolves continuously with fixed control inputs. Also, in the
same interval, other discrete actions may occur, updating the state of the system.
Such discrete changes may correspond, for example, to sensor inputs and changes of
the waypoint or the set-point of the controller. These changes may in turn influence
the computation of the next control action. For this class of periodically controlled
hybrid systems, we present a sufficient condition for verifying invariant properties.
The key requirement in applying this condition is to identify a collection of sub-
set(s) C of the candidate invariant set I, such that if the control action occurs
when the system state is in C, then the subsequent control output guarantees that
the system remains within I for the next period. The technique does not require
solving the differential equations; instead, it relies on checking conditions on the
periodicity and the subtangential condition at the boundary of I. For systems
with polynomial vector fields, we show how these checks can be automated using
sum of squares decomposition and semidefinite programming [Prajna et al. 2002].
These formulations are illustrated by analyzing a simple example in which an in-
variant is automatically determined using the constraint-based approach presented
in [Gulwani and Tiwari 2008]. We believe that other techniques for finding invari-
ants, for example those presented in [Platzer and Clarke 2008; Sankaranarayanan
et al. 2008], could also be effectively used for computing invariants of PCHAs. The
findings from this direction of research will be reported in a future paper.

Second, we apply the above technique to manually verify the safety and progress
properties of the planner-controller subsystem of Alice. Since the model of Alice
involves complex, nonpolynomial dynamics, the proposed automatic approach is not
directly applicable. Thus, the analysis is done completely by hand. First, we verify
a family of invariants {Ik}k∈N using the above-mentioned technique. This step
is fairly simple, requiring only algebraic simplification of expressions defining the
vector fields and Ik’s. Then, we determine a sequence of shrinking Ik’s as the vehicle
makes progress along the planned path. From these shrinking invariants, we are able
to deduce safety. That is, the deviation—distance of the vehicle from the planned
path—remains within a certain constant bound. In the process, we also derive
geometric properties of planner paths that guarantee that they can be followed
safely by the vehicle. Informally, these geometric properties require that sharp
turns in the path are only present after relatively long segments. In executing a
long segment, the vehicle converges to small deviation as well as small disorientation
with respect to the path. Thus, the instruction for executing a subsequent sharp
turn, does not make the deviation grow too much. The preliminary results of this
paper were published in [Wongpiromsarn et al. 2009].

The remainder of the paper is organized as follows: In Section 2, we briefly
present the key definitions for the hybrid I/O automaton framework. In Section 3,
we present PCHA and a sufficient condition for proving invariance. In this section,
we also present the formulation of the sufficient condition as a sum of squares
optimization problem for automatic verification. In Sections 4 and 5, we present
the formal model and verification of Alice’s Controller-Vehicle subsystem.

2. PRELIMINARIES

We use the Hybrid Input/Output Automata (HIOA) framework of [Lynch et al.
2003; Kaynar et al. 2005] for modelling hybrid systems and the state model-based
notations introduced in [Mitra 2007]. A HIOA is a non-deterministic state machine
whose state may change instantaneously through a transition, or continuously over
an interval of time following a trajectory . In this section, we briefly present impor-
tant terminology and notations that are used throughout the paper. We refer the
reader to [Kaynar et al. 2005; Mitra 2007] for more details.

A variable structure is used for specifying the states of an HIOA. Let V be a set
of variables. Each variable v ∈ V is associated with a type which defines the set of
values v can take. The set of valuations of V is denoted by val(V). For a valuation
v ∈ val(V) of set of variables V , its restriction to a subset of variables Z ⊆ V is
denoted by v d Z. A variable may be discrete or continuous. Typically, discrete
variables model protocol or software state, and continuous variables model physical
quantities such as time, position, and velocity.

A trajectory for a set of variables V models continuous evolution of the values
of the variables over an interval of time. Formally, a trajectory τ is a map from
a left-closed interval of R≥0 with left endpoint 0 to val(V). The domain of τ is
denoted by τ.dom. The first state of τ , τ.fstate, is τ(0). A trajectory τ is closed
if τ.dom = [0, t] for some t ∈ R≥0, in which case we define the last time of τ ,
τ.ltime

∆= t, and the last state of τ , τ.lstate
∆= τ(t). For a trajectory τ for V , its

restriction to a subset of variables Z ⊆ V is denoted by τ ↓ Z.
The set of allowed trajectories of all the variables of an HIOA is defined by

state models, as follows. For given set V of variables, a state model S is a triple
(FS , InvS , StopS), where (a) FS is a collection of differential equations (DEs)
involving the continuous variables in V , and (b) InvS and StopS are predicates
on V called invariant condition and stopping condition of S. S defines a set of
trajectories, denoted by traj(S), for the set V of variables. A trajectory τ for V is
in the set trajs(S) iff (a) the discrete variables in V remain constant over τ ; (b) the
restriction of τ on the continuous variables in V satisfies all the DEs in FS ; (c) at
every point in time t ∈ dom(τ), (τ ↓ V)(t) ∈ InvS ; and (d) if (τ ↓ V)(t) ∈ StopS
for some t ∈ dom(τ), then τ is closed and t = τ.ltime.

3. PERIODICALLY CONTROLLED HYBRID SYSTEMS

In this section, we define a subclass of HIOAs that is suitable for modeling sampled
control systems and embedded systems with periodic sensing and actuation. The
main result of this section, Theorem 3.5, gives a sufficient condition for proving
invariant properties of this subclass.

3.1 Periodically Controlled Hybrid Automata

A Periodically Controlled Hybrid Automaton (PCHA) is an HIOA with a set of
(control) actions that occur roughly periodically. These control actions alter the
actual control signal (input) that feeds to the plant and may change the continuous
and the discrete state variables of the automaton. The automaton may have other
actions that change only the discrete state of the automaton. These actions can
model, for example, sensor inputs and the change in the set-point of the controller
from higher-level inputs. However, these external commands do not affect the

dynamics of the system immediately; they only change the internal variables of the
controller. Formally, a PCHA is defined as follows.
Definition 3.1. Let X ⊆ Rn, for some n ∈ N, and L,Z, and U be arbitrary types.
A Periodically Controlled Hybrid Automaton (PCHA)A is a tuple (X,Q,Q0, A,D,S)
where
(a) X = {s, loc, z, u,now ,next} is a set of internal or state variables where s is a

continuous state variable of type X , loc is a discrete state (location or mode)
variable of type L, z is a command variable of type Z, u is a control variable of
type U , now is a real continuous variable and next is a real discrete variable;

(b) Q ⊆ val(X) is a set of states and Q0 ⊆ Q is a nonempty set of start states;
(c) A is a set of actions, consisting of a set of update actions and a control action;
(d) D ⊆ Q × A × Q is a set of discrete transitions. A transition (x, a,x′) ∈ D is

written in short as x a→A x′ or as x a→ x′ when A is clear from the context.
An action a ∈ A is said to be enabled at a state x ∈ Q if there exists a state
x′ ∈ Q such that x a→ x′; and

(e) S is a collection of state models for X, such that for every S,S ′ ∈ S , InvS ∩
InvS′ = ∅ and Q ⊆

⋃
S∈S InvS .

In addition, A must satisfy the property that every update action is enabled1 at
every state and may only change the value of z, while control actions occur roughly
periodically starting from time 0; the time gap between two successive occurrences
of control actions is within [∆1,∆1 + ∆2] where ∆1 > 0 and ∆2 ≥ 0.

We denote the components of a PCHAA byXA, QA, etc. For a setX of variables,
a state x is an element of val(X). We denote the valuation of a variable y ∈ X at
state x, by the usual (.) notation x.y.

The continuous state typically includes the continuous state of the plant and
some internal state of the controller. The discrete state represents the mode of
the system. The command variable stores externally produced input commands or
sensor updates. The control variable stores the control input to the plant. Finally,
the now and next variables are used for triggering the control action periodically.
Initializing next to −∆2 ensures that the first control action occurs at time 0.

PCHAA has two types of actions: (a) through input action update, A learns about
new externally produced input commands such as set-points, waypoints. When an
update(z′) action occurs, z′ is recorded in the command variable z. (b) The control
action changes the continuous and discrete state variables s and loc and the control
variable u. When control occurs, loc and s are computed as a function of their
current values and that of z, and u is computed as a function of the new values of
loc and s. Observe, from this definition, that the external commands do not affect
the dynamics of the system immediately. The modification of the dynamics due to
the external commands are effective at the next control cycle.

For each value of l ∈ L, the continuous state s evolves according to the trajectories
specified by state model smodel(l). That is, s evolves according to the differential
equation ṡ = fl(s, u). The timing of control behavior is enforced by the precondition
of control and the stopping condition of the state models.

1In the terminology of HIOA, an update action is an input action.

Note that as opposed to a general HIOA, a PCHA does not contain input and
output variables. For the sake of simplicity, we consider the PCHAs of the form
shown in Figure 1 with only one update action, and a unique starting state. How-
ever, Theorem 3.5 generalizes to PCHAs with multiple update actions as illustrated
later in Section 5.

1signature
internal control

3input update(z′ : Z)

5variables
internal s : X := s0

7internal discrete loc : L := l0,
z : Z := z0, u : U := u0

9internal now : R≥0 := 0, next : R := −∆2

11transitions

input update(z′)

13eff z := z′

14internal control
pre now ≥ next

16eff next := now + ∆1;
〈loc, s 〉:= h(loc, s, z);

18u := g(loc, s)

20trajectories
trajdef smodel(l : L)

22invariant loc = l
evolve d(now) = 1;

24d(s) = fl(s, u)
stop when now = next + ∆2

Fig. 1. PHCA with parameters ∆1, ∆2, g, h, {fl}l∈L. See, for example [Mitra 2007] for
the description of the language.

An execution of a PCHA A records the valuations of all its variables and the
occurrences of all actions over a particular run. An execution fragment of A is
a finite or infinite sequence α = τ0a1τ1a2 . . ., such that for all i in the sequence,
ai ∈ AA, τ ∈ trajs(S) for some S ∈ SA, and τi.lstate

ai+1→ τi+1.fstate. An execution
fragment is an execution if τ0.fstate ∈ Q0. An execution is closed if it is finite and
the last trajectory in it is closed. The first state of an execution fragment α, α.fstate,
is τ0.fstate, and for a closed α, its last state, α.lstate, is the last state of its last
trajectory. The limit time of α, α.ltime, is defined to be

∑
i τi.ltime. The set of

executions and reachable states of A are denoted by ExecsA and ReachA. A set of
states I ⊆ QA is said to be an invariant of A iff ReachA ⊆ I.

3.2 Invariant Verification

Proving invariant properties of hybrid automata is a central problem in formal
verification. Invariants are used for overapproximating the reachable states of a
given system, and therefore, can be used for verifying safety properties.

Given a candidate invariant set I ⊆ Q, we are interested in verifying that
ReachA ⊆ I. For continuous dynamical systems, checking the well-known subtan-
gential condition (see, for example [Bhatia and Szegö 1967]) provides a sufficient
condition for proving invariance of a set I that is bounded by a closed surface. The-
orem 3.5 below provides an analogous sufficient condition for PCHAs. In general,
however, invariant sets I for PCHAs have to be defined by a collection of functions
instead of a single function. For each mode l ∈ L, we assume that the invariant set
Il ⊆ X for the continuous state is defined by a collection of m boundary functions
{Flk}mk=1, where m is some natural number and each Flk : X → R is a differentiable
function2. Formally,

2Identical size m of the collections simplifies our notation; different number of boundary functions

for different values of l can be handled by extending the theorem in an obvious way.

Il
∆= {s ∈ X | ∀k ∈ {1, . . . ,m}, Flk(s) ≥ 0} and I ∆= {x ∈ Q| x.s ∈ Ix.loc}.

Note that the overall candidate invariant set I does not restrict the values of the
command or the control variables. In the remainder of this section, we develop a set
of sufficient conditions for checking that I is indeed an invariant of a given PCHA.
Lemma 3.2 modifies the standard inductive technique for proving invariance, so
that it suffices to check invariance with respect to control transitions and control-
free execution fragments of length not greater than ∆1 + ∆2. It states that I is an
invariant if it is closed under (a) the discrete transitions of the control actions, and
(b) control-free execution fragments of length at most ∆1 + ∆2.

Lemma 3.2. Suppose Q0 ⊆ I and the following two conditions hold:
(a) (control steps) For each state x,x′ ∈ Q, if x control→ x′ and x ∈ I then x′ ∈ I.
(b) (control-free fragments) For each closed execution fragment β = τ0 update(z1)

τ1 update(z2) . . . τn starting from a state x ∈ I where each zi ∈ Z, if
x.next− x.now = ∆1 and β.ltime ≤ ∆1 + ∆2, then β.lstate ∈ I.

Then ReachA ⊆ I.

Proof. Consider any reachable state x of A and any execution α such that
α.lstate = x. We can write α as β0 control β1 control . . . βk, where each βi is control-
free execution fragment of A, i.e., execution fragments in which only update actions
occur. From condition (a), it follows that for each i ∈ {0, . . . , k}, if βi.lstate ∈ I,
then βi+1.fstate ∈ I.

Thus, it suffices to prove that for each i ∈ {0, . . . , k}, if βi.fstate ∈ I, then
βi.lstate ∈ I. We fix an i ∈ {0, . . . , k} and assume that βi.fstate ∈ I. Let βi =
τ0 update(z1) τ1 update(z2) . . . τn, where for j ∈ {0, . . . , n}, zj ∈ Z and τj is a
trajectory of A. If i = 0, then β0.ltime = 0 and β0.lstate d {loc, s} = β0.fstate d
{loc, s} since the first control action occurs at time 0 and update transitions do not
affect the value of loc and s. Therefore, βi.lstate ∈ I. Otherwise, i > 0 and since
βi starts immediately after a control action, β.fstate d next− β.fstate d now = ∆1.
From periodicity of control actions, we know that βi.ltime ≤ ∆1 + ∆2, and hence
from condition (b) it follows that βi.lstate ∈ I.

Invariance of control steps can often be checked through case analysis which can
be partially automated using a theorem prover [Owre et al. 1996]. The next key
lemma provides a sufficient condition for proving invariance of control-free frag-
ments. Since control-free fragments do not change the valuation of the loc variable,
for this part, we fix a value l ∈ L. For each index of the boundary functions
j ∈ {1, . . .m}, we define the set ∂Ij to be part of the set Il where the function Flj
vanishes. That is, ∂Ij

∆= {s ∈ Il | Flj(s) = 0}. For the sake of brevity, we call ∂Ij
the jth boundary of Il even though strictly speaking, the jth boundary of Il is only
a subset of ∂Ij according to the standard topological definition. Similarly, we say
that the boundary of Il, is ∂Il =

⋃
j∈{1,...,m} ∂Ij .

Lemma 3.3. Suppose that there exists a collection {Cj}mj=1 of subsets of Il such
that the following conditions hold:

(a) (Subtangential) For each s0 ∈ Il \ Cj and s ∈ ∂Ij, ∂Flj(s)
∂s · fl(s, g(l, s0)) ≥ 0.

(b) (Bounded distance) ∃ cj > 0 such that ∀ s0 ∈ Cj , s ∈ ∂Ij, ||s− s0|| ≥ cj.

(c) (Bounded speed) ∃ bj > 0 such that ∀ s0 ∈ Cj , s ∈ Il, ||fl(s, g(l, s0))|| ≤ bj,
(d) (Fast sampling) ∆1 + ∆2 ≤ minj∈{1,...,m}

cj
bj

.

Then, any control-free execution fragment β, with β.ltime ≤ ∆1 + ∆2, starting from
a state in Il where next− now = ∆1, remains within Il.

β1

Il

β2

β3

β4
β5 β6

β7C1

C2

∂I1

∂I2

Fig. 2. A graphical explanation of
Lemma 3.3 showing an invariant set
Il defined by two boundary func-
tions. The boundary ∂I1 is drawn
in solid line whereas the boundary
∂I2 is drawn in dotted line. The cor-
responding sets C1 and C2 are also
shown.

In Figure 2, the control actions and the
control-free execution fragments are shown by
bullets and solid lines, respectively. The dashed
lines represent the discrete transitions of the
control actions. An execution fragment start-
ing in I and leaving I, must cross ∂I1 or ∂I2.
Consider the following four cases.

(1) If u is evaluated outside both C1 and C2

(e.g. τ2, τ4 and τ6), then condition (a) guar-
antees that the fragment does not cross ∂Ij
where j ∈ {1, 2} because when it reaches
∂Ij , the vector field governing its evolution
points inwards with respect to ∂Ij .

(2) If u is evaluated inside C1 but outside C2

(e.g. τ1 and τ7), then by the previous rea-
soning, condition (a) guarantees that the
fragment does not cross ∂I2. In addition, conditions (b) and (c) guarantee
that it takes finite time before the fragment reaches ∂I1 and condition (d)
guarantees that this finite time is at least ∆1 + ∆2; thus, before the fragment
crosses ∂I1, u is evaluated again.

(3) If u is evaluated outside C1 but inside C2 (e.g. τ3), then by a symmetric
argument, the fragment does not cross ∂I1 or ∂I2.

(4) If u is evaluated inside both C1 and C2 (e.g. τ5), then conditions (b), (c) and
(d) guarantee that u is evaluated again before the fragment crosses ∂I1 or ∂I2.

Proof. We fix a control-free execution fragment β = τ0update(z1)τ1update(z2) . . . τn
such that at β.fstate, next−now = ∆1. Without loss of generality we assume that
at β.fstate, loc = l, and s = x1, where l ∈ L and x1 ∈ Il. We have to show that at
β.lstate, s ∈ Il.

First, observe that for each k ∈ {0, . . . , n}, (τk ↓ s) is a solution of the differential
equation(s) d(s) = fl(s, g(l, x1)). Let τ be the pasted trajectory τ0_τ1_. . . τn.3 Let
τ.ltime be T . Since the update action does not change s, τk.lstate d s = τk+1.fstate d
s for each k ∈ {0, . . . , n − 1}. As the differential equations are time invariant,
(τ ↓ s) is a solution of d(s) = fl(s, g(l, x1)). We define the function γ : [0, T] → X
as ∀ t ∈ [0, T], γ(t) ∆= (τ ↓ s)(t). We have to show that γ(T) ∈ Il. Suppose,
for the sake of contradiction, that there exists t∗ ∈ [0, T], such that γ(t∗) 6∈ Il.
By the definition of Il, there exists i such that Fli(γ(0)) ≥ 0 and Fli(γ(t∗)) < 0.
We pick one such i and fix it for the remainder of the proof. Since Fli and γ are
continuous, from intermediate value theorem, we know that there exists a time t1

3τ1 _ τ2 is the trajectory obtained by concatenating τ2 at the end of τ1.

before t∗ where Fli vanishes and that there is some finite time ε > 0 after t1 when
Fli is strictly negative. Formally, there exists t1 ∈ [0, t∗) and ε > 0 such that for all
t ∈ [0, t1], Fli(γ(t)) ≥ 0, Fli(γ(t1)) = 0, and for all δ ∈ (0, ε], Fli(γ(t1 + δ)) < 0.

Case 1: x1 ∈ Il \ Ci. Since Fli(γ(t1)) = 0, by definition, γ(t1) ∈ ∂Ii. But from
the value of Fli(γ(t)) where t is near to t1, we get that ∂Fli

∂t (t1) = ∂Fli
∂s (γ(t1)) ·

fl(γ(t1), g(l, x1)) < 0. This contradicts condition (a).
Case 2: x1 ∈ Ci. Since for all t ∈ [0, t1], Fli(γ(t)) ≥ 0 and Fli(γ(t1)) = 0, we get

that for all t ∈ [0, t1], γ(t) ∈ Il and γ(t1) ∈ ∂Ii. So from condition (b) and (c), we
get ci ≤ ‖γ(t1) − x1‖ =

∥∥∥∫ t10
fl(γ(t), g(l, x1))dt

∥∥∥ ≤ bit1. That is, t1 ≥ ci
bi

. But we
know that t1 < t∗ ≤ T and periodicity of control actions T ≤ ∆1 + ∆2. Combining
these, we get ∆1 + ∆2 >

ci
bi

, which contradicts condition (d).

For PCHAs with certain properties, the following lemma provides sufficient con-
ditions for the existence of the bounds bj and cj , which satisfy the bounded distance
and bounded speed conditions of Lemma 3.3. The proof appears in the full version
of the paper available from [Wongpiromsarn et al. 2008]

Lemma 3.4. For a given l ∈ L, let Ul = {g(l, s) | l ∈ L, s ∈ Il} ⊆ U and suppose Il
is compact and fl is continuous in Il×Ul. The bounded distance and bounded speed
conditions (of Lemma 3.3) are satisfied if Cj ⊂ Il satisfies the following conditions:
(a) Cj is closed, and (b) Cj ∩ ∂Ij = ∅

Theorem 3.5 combines the above lemmas and provides sufficient conditions for
invariance of I.

Theorem 3.5. Consider a PCHA A and a set I ⊆ QA. Suppose Q0A ⊆ I,
A satisfies control invariance condition of Lemma 3.2, and conditions (a)–(d) of
Lemma 3.3 for each l ∈ LA. Then ReachA ⊆ I.

Theorem 3.5 essentially exploits the structure of PCHAs in order to simplify their
invariant verification. It can be applied to any PCHAs, including those with non-
polynomial vector fields such as Alice, as illustrated later in Section 5. Although
the PCHA of Figure 1 has one action of each type, Theorem 3.5 can be extended for
periodically controlled hybrid systems with an arbitrary number of update actions.
For PCHAs with polynomial vector fields, given semi-algebraic sets Il and Cj ,
checking condition (a) and finding cj and bj that satisfy conditions (b) and (c) of
Lemma 3.3 can be formulated as a sum of squares optimization problem (provided
that Il and Cj are basic semi-algebraic sets) or proving emptiness of certain semi-
algebraic sets based on quantifier elimination. The sum of squares formulation
is presented in the next section and allows the proof to be automated using, for
example, SOSTOOLS [Prajna et al. 2002]. The quantifier elimination problem
can also be formulated and allows the proof to be automated using, for example,
QEPCAD [Brown 2003]. Alternatively, in Section 3.4, we show how an invariant
set can be automatically computed using the constraint-based approach presented
in [Gulwani and Tiwari 2008].

3.3 Sum of Squares Formulation for Checking the Invariant Conditions

Suppose the candidate invariant set Il is a basic semi-algebraic set, i.e., each of
the boundary functions Flk : X → R is a real polynomial. This section presents a
sum of squares formulation for (1) checking condition (a) and finding the cj and bj

that satisfy conditions (b) and (c) of Lemma 3.3 for a given basic semi-algebraic
subset Cj , and (2) finding a subset Cj such that conditions (a)–(c) of Lemma 3.3
are satisfied. For the first case, the sum of squares problem is convex and can be
solved using, for example, SOSTOOLS [Prajna et al. 2002]. For the second case,
however, the problem is not convex but can still be automatically solved using an
iterative scheme as presented in [Prajna and Jadbabaie 2004]. Roughly, we iterate
between the following two steps: (i) fix the unknown multipliers and search for a
subset Cj that satisfies conditions (a)–(c) of Lemma 3.3, and (ii) fix Cj and search
for the unknown multipliers.

Checking the Invariant Condition for a Given Subset

Suppose Cj a basic semi-algebraic set, that is, there exists a natural number p such
that Cj can be written as

Cj = {s ∈ Il | ∀i ∈ {1, . . . , p}, Gji(s) ≥ 0} (1)

where Gji : X → R is a real polynomial for each i ∈ {1, . . . , p}. Using the gener-
alized S-procedure (a special case of the Positivstellensatz) [Topcu et al. 2008], we
obtain the following sufficient condition for condition (a) of Lemma 3.3.

For each k ∈ {1, . . . , p}, there exist sums of squares κ1,k(s, s0), µk(s), ρk,i(s) and
σk,i(s) for i ∈ {1, . . . ,m} and a polynomial νk(s) such that

∂Flj(s)

∂s
· fl(s, g(l, s0)) = κ1,k(s, s0) +

mX
i=1

ρk,i(s)Fli(s) + νk(s)Flj(s) +

mX
i=1

σk,i(s0)Fli(s0)

− µk(s0)Gjk(s0).

Given arbitrary s ∈ ∂Ij and s0 ∈ Il \ Cj , non-negativity of κ1,k(s, s0), ρk,i(s),
σk,i(s0) and µk(s0) implies that the derivative term on the left-hand side of the
above equation is non-negative. In other words, the above condition ensures that
for each k ∈ {1, . . . , p},
{(s, s0) ∈ X × X | ∀i ∈ {1, . . .m}, Fli(s) ≥ 0, Flj(s) = 0, Fli(s0) ≥ 0, Gjk(s0) ≤ 0}
⊆
{

(s, s0) ∈ X × X
∣∣ ∂Flj(s)

∂s · fl(s, g(l, s0)) ≥ 0
}
.

That is, for all s ∈ ∂Ij and s0 ∈ Il\Cj , we have ∂Flj(s)
∂s ·fl(s, g(l, s0)) ≥ 0. Similarly,

based on the generalized S-procedure, condition (b) of Lemma 3.3 can be formulated
as the following optimization problem.

Minimize −cj such that there exist sums of squares κ2(s, s0), γi(s) for i ∈ {1, . . . ,m}
and λi(s) for i ∈ {1, . . . p} and a polynomial γm+1(s) such that

‖s− s0‖2 − c2j = κ2(s, s0) +

mX
i=1

γi(s)Fli(s) + γm+1(s)Flj(s) +

pX
i=1

λi(s0)Gji(s0).

Finally, condition (c) of Lemma 3.3 can be formulated as the following optimiza-
tion problem.

Minimize bj such that there exist sums of squares κ3(s, s0), ζi(s) for i ∈ {1, . . . ,m}
and ηi(s) for i ∈ {1, . . . p} such that

b2j − ‖fl(s, g(l, s0)‖2 = κ3(s, s0) +
mX

i=1

ζi(s)Fli(s) +

pX
i=1

ηi(s0)Gji(s0).

Finding a Subset for Checking the Invariant Conditions

Suppose Cj = {s ∈ Il | Gj(s) ≥ 0}. In this case, we only have to find a polynomial
Gj(s). According to the generalized S-procedure, this problem can be formulated
as follows: Find sums of squares ρi(s), σi(s), µ(s), γi(s), λ(s), ζi(s) and η(s) for
i ∈ {1, . . . ,m} and polynomials Gj(s), ν(s) and γm+1(s) such that the following
are sums of squares:

(a) ∂Flj(s)
∂s · fl(s, g(l, s0)) −

∑m
i=1 ρi(s)Fli(s) − ν(s)Flj(s) −

∑m
i=1 σi(s0)Fli(s0) +

µ(s0)Gj(s0),
(b) ‖s− s0‖2 − c2j −

∑m
i=1 γi(s)Fli(s)− γm+1(s)Flj(s)− λ(s0)Gj(s0), and

(c) b2j − ‖fl(s, g(l, s0)‖2 −
∑m
i=1 ζi(s)Fli(s)− η(s0)Gj(s0).

3.4 Example

In this section, we illustrate, on a simple example, how invariant verification of
a PCHA can be partially automated. Consider a one-dimensional system whose
global state (e.g. position or velocity) needs to be regulated such that it stays within
some safe ball with respect to a reference point, given by an external command.
The reference point is given as an input to the system and may change throughout
an execution. We assume that the distance between the reference point and the
global state of the system at the time the reference point is received is not larger
than δ. The system has the following variables: (a) a continuous state variable s
of type R that represents the deviation of the system from the current reference
point; (b) a discrete state variable loc of type R that represents the current reference
point; (c) a command variable z of type R that stores the last external command,
i.e., the reference point for the next control cycle; and (d) a control variable u of
type U = {a1, a2} where a1 ∈ R− and a2 ∈ R+ are system parameters.

Figure 3 shows the HIOA specification of this state regulator system. The control
action occurs once every ∆ time starting from time 0 where ∆ ∈ R+. This action
updates the values of the variables s, loc and u as follows.
A. First, set the value of loc and s so that they correspond to the new reference

point and the deviation of the system from the new reference point, respectively
(lines 16–17).

B. Based on the updated value of s, u is computed as follows (lines 18–19): If
s > 0, then u is set to a1. Otherwise, u is set to a2.

Along a trajectory, the continuous state s evolves according to the differential
equation ṡ = u (line 22). That is, for any l ∈ L, the function fl of line 24 of Figure 1
is defined as fl(s, u) = u.

Invariant. For each mode l ∈ L, we let Il = [−δ + a1∆, δ + a2∆]. That is, the
candidate invariant set Il is defined by two boundary functions Fl1(s) = s+δ−a1∆
and Fl2(s) = −s + δ + a2∆. The overall candidate invariant set is then given by
I ∆= {x ∈ Q| Fl1(x.s) ≥ 0 and Fl2(x.s) ≥ 0}.

Proving Invariance. We use Theorem 3.5 to show that I is in fact an invariant
of the system. Clearly, the initial state is contained in I. To verify the control
invariance condition of Lemma 3.2, we define ŝ , s+loc to be the global state of the
system. From the assumption on the distance between the reference point and the

1signature
internal control

3input update(z′ : Z)

5variables
internal s : R := s0 = 0

7internal discrete loc : R, z : R, u : {a1, a2}
internal now : R≥0 := 0, next : R≥0 := 0

9

transitions

11input update(z′)

eff z := z′

internal control
14pre now ≥ next

eff next := now + ∆;
16s := s− z + loc;

loc := z;
18if s > 0 then u := a1

else u := a2 fi
20

trajectories
22evolve d(now) = 1; d(s) = u

stop when now = next

Fig. 3. The state regulator system with parameters a1 ∈ R−, a2 ∈ R+ and ∆ ∈ R+.

global state of the system at the time an update action occurs and periodicity control
actions, it can be checked that when a control action occurs, ŝ− z ∈ [−δ+a1∆, δ+
a2∆]. Hence, from the update rule of s (line 16), the control invariance condition
of Lemma 3.2 is satisfied. Finally, define C1 , [0, δ+ a2∆] and C2 , [−δ+ a1∆, 0].
We get that conditions (a)–(d) of Lemma 3.3 are satisfied with c1 = δ − a1∆,
c2 = δ + a2∆, b1 = −a1, b2 = a2.

Automatically Finding an Invariant. We consider the case where a1 = −1 and
a2 = 1. Assume that an invariant Il for any mode l ∈ R has the following form:
Il = {s ∈ R | Fl1(s) ≥ 0 and Fl2(s) ≥ 0} where Fl1(s) = s − η1, Fl2(s) = −s + η2

and η1 ≤ −δ + a1∆ and η2 ≥ δ + a2∆ are constants that need to be computed
such that all the conditions of Lemma 3.3 are satisfied. (From the previous proof,
these constraints on η1 and η2 ensure that the initial state is contained in I and
the control invariance condition of Lemma 3.2 are satisfied.)

To prove that Il is in fact an invariant, we use the sets C1 and C2 of the following
forms: C1 = {s ∈ R | G1(s) ≥ 0 and Fl2(s) ≥ 0} and C2 = {s ∈ R | Fl1(s) ≥
0 and G2(s) ≥ 0} where G1(s) = s − κ1, G2(s) = −s + κ2 and κ1 and κ2 are
constants to be determined.

Clearly, for any s, s0 ∈ R and l ∈ L, ‖fl(s, g(l, s0))‖ = ‖g(l, s0)‖ = 1. Thus,
condition (c) of Lemma 3.3 is satisfied with bj = 1 for any sets Cj and Il. With
the particular form of the sets C1, C2 and Il we have previously chosen, it is
straightforward to check that the problem of finding η1, η2, κ1 and κ2 such that all
the conditions of Lemma 3.3 are satisfied for j = 1 is equivalent to finding η1, η2,
κ1 and κ2 such that for all s, s0 ∈ R, the followings are satisfied:
(a) (Fl1(s0) < 0) ∨ (Fl2(s0) < 0) ∨ (G1(s0) ≥ 0) ∨ (Fl1(s) 6= 0) ∨ (Fl2(s) <

0) ∨ (s0 ≤ 0),
(b) κ1 ≤ η2, κ1 > η1, and κ1 − η1 ≥ ∆.
Note that condition (a) is obtained from condition (a) of Lemma 3.3 while condition
(b) is obtained from conditions (b) and (d) of Lemma 3.3. Similarly, for j = 2, the
following conditions need to be satisfied for all s, s0 ∈ R:
(c) (Fl1(s0) < 0) ∨ (Fl2(s0) < 0) ∨ (G2(s0) ≥ 0) ∨ (Fl1(s) < 0) ∨ (Fl2(s) 6=

0) ∨ (s0 > 0),
(d) κ2 ≥ η1, κ2 < η2, and η2 − κ2 ≥ ∆.

As described in [Gulwani and Tiwari 2008], condition (a) can be proved by finding
a constant λ1 and non-negative constants ν1, . . . , ν3 and µ1, . . . , µ3 such that

Planner

Controller

Vehicle

Brake

Controller

plan(p)

a, φ
x, y

θ, v

brake(b)

(a)

vehicle

p[seg]

p[seg + 1]

current seg.

θ

e2

e
1

d

(b)

1variables
output x:R:= x0; y:R:= y0;

3θ:R:= θ0; v:R:= v0
input a, φ: R

5

trajectories
7evolve d(x) = v cos(θ)

d(y) = v sin(θ)
9if |u.φ| ≤ φmax

then d(θ) = v
L tan(φ)

11else d(θ) = v
L tan(φ

|φ|φmax) fi

if v > 0 ∨ a ≥ 0
13then d(v) = a

else d(v) = 0 fi

(c)

Fig. 4. (a) Planner-Controller system. (b) Deviation and disorientation. (c) Vehicle.

ν1Fl1(s0) + ν2Fl2(s0)− µ1G1(s0) + λ1Fl1(s) + ν3Fl2(s) + µ2s0 + µ3 = 0 (2)
and at least one of the µ1, µ2, µ3 is strictly positive. Similarly, the validity of
condition (c) can be proved by finding a constant λ2 and non-negative constants
ν4, . . . , ν7 and µ4, µ5 such that

ν4Fl1(s0) + ν5Fl2(s0)− µ4G2(s0) + ν6Fl1(s) + λ2Fl2(s)− ν7s0 + µ5 = 0 (3)
and either µ4 > 0 or µ5 > 0 (or both).

Using the tool presented in [Gulwani and Tiwari 2008], the unknowns that satisfy
(2), (3) and conditions (b) and (d) are found for δ = 0.08 and ∆ = 0.02 to be:
η1 = −0.2, η2 = 0.2, κ1 = −0.1, κ2 = 0.1, ν1 = 1, ν2 = 2, µ1 = 16, λ1 = 0, ν3 = 0,
µ2 = 17, µ3 = 1, ν4 = 0, ν5 = 0, µ4 = 20, ν6 = 0, λ2 = 0, ν7 = 20 and µ5 = 2.
That is, the invariant set is given by Il = [−0.2, 0.2] (whereas the invariant set we
have verified manually is given by Il = [−0.1, 0.1]).

4. AUTONOMOUS VEHICLE SYSTEM

In this section, we describe an autonomous ground vehicle (Alice) consisting of the
physical vehicle and the controller (see Figure 4(a)). Vehicle captures the position,
orientation, and velocity of Alice on the plane. Controller receives information
about the state of Alice and a (possibly infinite) sequence of waypoints from a
Planner, and periodically computes the steering (φ) and acceleration (a) such that
Alice (a) remains within a certain bounded distance emax of the planned path, and
(b) makes progress towards successive waypoints at a target speed. Property (a)
together with the assumption (possibly guaranteed by Planner) that all planned
paths are at least emax distance away from obstacles, imply that the Vehicle does
not collide with obstacles. While the Vehicle makes progress towards a certain
waypoint, the subsequent waypoints may change owing to the discovery of new
obstacles and changes in the mission plan. Finally, the Controller may receive an
externally triggered brake input, to which it must react by slowing the Vehicle down.

4.1 Vehicle

The Vehicle and Controller are modeled as HIOAs, but as we shall see shortly, the
composed system has no inputs and in fact is a PCHA. The Vehicle automaton
(Figure 4) specifies the dynamics of the vehicle with acceleration (a) and steering

(φ) inputs, in terms of two parameters: (a) φmax ∈ (0, π2) is the physical limit on the
steering angle, and (b) L is the wheelbase. The output variables of Vehicle are (a)
the x and y coordinates of the position with respect to a global coordinate system,
(b) orientation θ with respect to the positive direction of the global x axis, and (c)
velocity v. These variables evolve according to the differential equations of lines 7–
14. Two aspects of this Vehicle model are noteworthy: (i) In determining the
orientation of the Vehicle, if the input steering angle φ is greater than the maximum
limit φmax, then the maximum steering in the correct direction is applied. (ii) The
acceleration can be negative only if the velocity is positive, and therefore the Vehicle
cannot move backwards. This Vehicle model requires bounds on minimum and
maximum acceleration, however, the Controller ensures that the input acceleration
is always within such a bound.

4.2 Controller

Figure 5 shows the specification of the Controller automaton that reads the state
of the Vehicle and issues acceleration and steering outputs to achieve the afore-
mentioned goals. Controller is parameterized by: (a) the sampling period ∆ ∈ R+,
(b) the target speed vT ∈ R≥0, (c) proportional control gains k1, k2 > 0, (d) a con-
stant δ > 0 relating the maximum steering angle and the speed, and (e) maximum
and braking accelerations amax > 0 and abrake < 0. Restricting the maximum
steering angle instead of the maximum steering rate is a simplifying but conser-
vative assumption. Given a constant relating the maximum steering rate and the
speed, there exists δ as defined above that guarantees that the maximum steering
rate requirement is satisfied.

A path is an infinite sequence of points p1, p2, . . . where pi ∈ R2, for each i. The
main state variables of Controller are the following:
(a) brake and new path are command variables that store the information received

through the most recent brake (On or Off) and plan (a path) actions.
(b) path is the current path being followed by Controller.
(c) seg is the index of the last waypoint visited in the current path. That is, seg +1

is the index of the current waypoint. The straight line joining path[seg] and
path[seg + 1] is called the current segment .

(d) deviation e1 is the signed perpendicular distance from the current position of
the Vehicle to the current segment (see, Figure 4(b)).

(e) disorientation e2 is the difference between the current orientation (θ) of the
Vehicle and the angle of the current segment.

(f) waypoint-distance d is the signed distance of the Vehicle to the current waypoint
measured parallel to the current segment.

The brake(b) action is an externally controlled input action that informs the
Controller about the application of an external brake (b = On) or the removal of
the brake (b = Off). When brake(b) occurs, b is recorded in the command variable
brake. The plan(p) action is controlled by the external Planner (not presented in
this paper) and it informs the Controller about a newly planned path p. When this
action occurs, the path p is recorded in the variable new path. The main action
occurs once every ∆ time starting from time 0. This action updates the values of
the variables e1 , e2 , d , path, seg , a and φ as follows:

signature

2input plan(p:Seq[R]); brake(b : On,Off)
internal main

4

variables
6input x, y, θ, v: R

output a, φ: R := (0, 0)
8internal brake: {On, Off} := Off

path: Seq[R2] := arbitrary

10new path: Seq[R2] := path
seg: N := 1

12e1, e2, d : R := [e1,0, e2,0, d0]
now: R := 0; next:R≥0 := 0

14

transitions
16input plan(p)

eff new path := p
18

input brake(b)
20eff brake := b

22internal main
pre now = next

24eff next := now + ∆
if path 6= new path ∨ d ≤ 0 then

26if path 6= new path
then seg := 1; path := new path

28elseif d ≤ 0
then seg := seg + 1 fi

30let ~p =

"
path[seg + 1].x− path[seg].x

path[seg + 1].y − path[seg].y

#

~q =

"
path[seg + 1].y − path[seg].y

−(path[seg + 1].x− path[seg].x)

#

32~r =

"
path[seg + 1].x− x
path[seg + 1].y − y)

#
e1 := 1

‖~q‖~q · ~r
34e2 := θ − ∠~p

d := 1
‖~p‖ ~p · ~r

36fi

38let φd = −k1 e1 − k2 e2

φ =
φd
|φd|

min(δ × v, |φd|)
40

if brake = On then a := abrake
42elseif brake = Off ∧ v < vT

then a := amax
44else a := 0 fi

46trajectories
evolve d(now) = 1

48d(e1) = v sin(e2)
d(e2) = v

L tan(φ)

50d(d) = -v cos(e2)
stop when now = next

Fig. 5. Controller with parameters vT , k1, k2 ∈ R≥0, δ,∆ ∈ R+ and abrake < 0.

A. If new path (obtained from the Planner) is different from path, then seg is set
to 1 and path is set to new path (line 27).

B. If new path is the same as path and the waypoint-distance d is less than or equal
to 0, then seg is set to seg + 1 (line 29).

C. For both of the above cases, temporary variables ~p, ~q, and ~r are computed to
update e1 , e2 , d ;

D. The steering φ is computed using a proportional control law saturated at δ× v.
That is, the magnitude of the steering output φ is set to the minimum of | −
k1e1 − k2e2| and δ × v (line 39).

E. The acceleration a is computed using bang-bang control law. If brake is On
then a is set to the braking deceleration abrake; otherwise, it executes amax
until the Vehicle reaches the target speed, at which point a is set to 0.

Along a trajectory, the evolution of the variables are specified by the differential
equations on lines 48–50.

4.3 Complete System

Let A be the composition of the Controller and the Vehicle automata. The contin-
uous state of A is defined by the valuations of x, y, θ, v, e1, e2, and d of Vehicle
and Controller. For convenience, we define a single derived variable s of type
X = R7 encapsulating all these variables. The discrete state of A is defined by
the valuations of brake, path and seg of Controller. A derived variable loc of type
L = Tuple[{On,Off }, Seq[R2],N] is defined encapsulating all these variables. It
can be checked easily that the composed automaton A is a PCHA. The variables,

actions, state transition functions of the corresponding PCHA can be found in the
full version of the paper [Wongpiromsarn et al. 2008].

5. ANALYSIS OF THE SYSTEM

The informally stated goals of the system translate to the following subgoals:

A. (safety) At all reachable states of A, the deviation (e1) of the Vehicle is upper-
bounded by emax, where emax is determined in terms of system parameters.

B. (waypoint progress) The Vehicle reaches successive waypoints.

In Sections 5.1 and 5.2, we define a family {Ik}k∈N of subsets of QA and using
Lemmas 3.3, 3.4, we conclude that they are invariant with respect to the control-
free fragments of A. From the specification of main action, we see that the discrete
state changes only occur if path 6= new path or waypoint-distance d ≤ 0. Hence,
using Theorem 3.5, we conclude that any execution fragment starting in Ik remains
within Ik, provided that path and current segment do not change.

In Section 5.3, we establish the following segment progress property: There ex-
ist certain threshold values of deviation, disorientation, and waypoint-distance such
that from any state x with greater deviation, disorientation, and waypoint-distance,
the Vehicle reduces its deviation and disorientation with respect to the current seg-
ment, while making progress towards its current waypoint. This intermediate result
is proved by showing that starting from Ik, Ik+1 ⊆ Ik is reached in a finite amount
of time and for k smaller than the threshold value k∗, Ik+1 is strictly contained
in Ik. Finally, in Section 5.4, we prove an invariance of I0 and derive geometric
properties of planner paths that can be followed by A safely. These geometric prop-
erties specify the minimum length of a path segment and the relationship between
the segment length and the maximum difference between consecutive segment ori-
entations and are derived from the segment progress property. An invariance of I0

provides a proof certificate that A satisfies the safety property (A) and the way-
point progress property (B). Since Alice’s original parameters violate the sufficient
conditions for an invariance of I0, it is not guaranteed that the behavior of Alice
satisfies these subgoals. In fact, during the National Qualifying Event of the 2007
DARPA Urban Challenge, Alice violated the safety property (A), leading to the
stuttering behavior.

5.1 Family of Invariants

We define, for each k ∈ N, the set Ik that bounds the deviation e1 of the Vehicle
to be within [−εk, εk]. This bound on deviation alone, of course, does not give us
an inductive invariant. If the deviation is εk and the Vehicle is highly disoriented,
then it would violate Ik. Thus, Ik also bounds the disorientation such that the
steering angle computed based on the proportional control law is within [−φk, φk].
To prevent the Vehicle from not being able to turn at low speed and to guarantee
that the execution speed of the Controller is fast enough with respect to the speed
of the Vehicle, Ik also bounds the speed of the Vehicle. Formally, Ik is defined in
terms of εk, φk ≥ 0 as

Ik
∆= {x ∈ Q | ∀i ∈ {1, . . . 6}, Fk,i(x.s) ≥ 0} (4)

where Fk,1, . . . , Fk,6 : R7 → R are defined as follows:

Fk,1(s) = εk − s.e1; Fk,2(s) = εk + s.e1; (5)
Fk,3(s) = φk + k1s.e1 + k2s.e2; Fk,4(s) = φk − k1s.e1 − k2s.e2; (6)

Fk,5(s) = vmax − s.v; Fk,6(s) = δs.v − φb. (7)

Here vmax = vT + ∆amax and φb > 0 is an arbitrary constant. As we shall see
shortly, the choice of φb affects the minimum speed of the Vehicle and also the
requirements of a brake action. We examine a state x ∈ Ik, that is, Fk,i(x.s) ≥ 0 for
any i ∈ {1, . . . , 6}. Fk,1(s), Fk,2(s) ≥ 0 means s.e1 ∈ [−εk, εk]. Fk,3(s), Fk,4(s) ≥ 0
means that the steering angle computed based on the proportional control law is
within the range [−φk, φk]. Further, if φk ≤ φmax, then the computed steering
satisfies the physical constraint of the vehicle. If, in addition, we have φb ≥ φk and
Fk,6(s) ≥ 0, then the Vehicle actually executes the computed steering command.
Fk,5(s) ≥ 0 means that the speed of the Vehicle is at most vmax.

For each k ∈ N, we define

θk,1 =
k1

k2
εk −

1
k2
φk and θk,2 =

k1

k2
εk +

1
k2
φk. (8)

That is, θk,1 and θk,2 are the values of e2 at which the proportional control law yields
the steering angle of φk and−φk respectively, given that the value of e1 is−εk. From
the above definitions, we make the following observations about the boundary of the
Ik sets: for any k ∈ N and x ∈ Ik, (a) x.e2 ∈ [−θk,2, θk,2], (b) Fk,1(x.s) = 0 implies
x.e2 ∈ [−θk,2,−θk,1], (c) Fk,2(x.s) = 0 implies x.e2 ∈ [θk,1, θk,2], (d) Fk,3(x.s) = 0
implies x.e2 ∈ [−θk,2, θk,1], and (e) Fk,4(x.s) = 0 implies x.e2 ∈ [−θk,1, θk,2].

We assume that φb and all the ε′ks and φk’s satisfy the following assumptions
that are derived from physical and design constraints on the Controller. The region
in the φk,εk plane that satisfies Assumption 5.1 is shown Figure 6.
Assumption 5.1. (Vehicle and controller design) (a) φk ≤ φb ≤ φmax and φk <
π
2 , (b) 0 ≤ θk,1 ≤ θk,2 < π

2 , (c) L cotφk sin θk,2 < k2
k1

, (d) ∆ ≤ c
b where c =

1√
k2

1+k2
2

(φk − φ̃), b = vmax

√
sin2 θk,2 + 1

L2 tan2(φ̃) and φ̃ = cot−1
(

k2
k1L sin θk,2

)
,4

and (e) tanφk
2L vmax∆ ≤ π

2 .

If the Vehicle is forced to slow down too much at the boundary of an Ik by
the brakes, then it may not be able to turn enough to remain inside Ik. Thus, in
verifying the above properties we need to restrict our attention to executions in
certain good brake controllers in which brake inputs do not occur at low speeds and
are not too persistent. This is formalized by the next definition.

Definition 5.2. A brake controller is good if its composition with Controller gives
rise to an execution α = τ0a1τ1a2 . . . that satisfies: If a brake(On) action occurs at
time t, then for any i ∈ N such that t ∈ dom(τi), (a) (τi ↓ v)(t) > φb

δ + ∆|abrake|,
and (b) brake(Off) must occur within time t+ 1

|abrake| ((τi ↓ v)(t)− φb
δ −∆|abrake|).

We assume that the brake controller satisfies the above assumption and for the
remainder of this section, we only consider executions in good brake controllers. A
state x ∈ QA is reachable if there exists an execution in a good brake controller α
with α.lstate = x.

4Using Assumption 5.1(c), it can be shown that φ̃ < φk so c
b
> 0.

0 0.5 1 1.50

5

10

15

20

25

φk

ε k

θk,2 = π
2

L cotφk sinθk,2 = k2
k1

θk,1 = 0
φk = k2

π
4

(a)

0 0.1 0.2 0.3 0.4 0.5
0.09

0.093

0.096

0.099

0.102

0.105

0.108

φk

∆

(b)

Fig. 6. (a) The set of (εk, φk) that satisfies Assumptions 5.1 (b) and (c) and are represented by

the green region. (b) The relationship between the maximum bound on ∆ and φk for εk = 1
k1
φk.

5.2 Invariance Property

We fix a k ∈ N for the remainder of the section and denote Ik, Fk,i as I and Fi,
respectively, for i ∈ {1, . . . , 6}. As in Lemma 3.3, we define I = {s ∈ X |Fi(s) ≥ 0}
and for each i ∈ {1, . . . , 6}, ∂Ii = {s ∈ X | Fi(s) = 0} and let the functions
f1, f2, . . . , f7 : R7 × R2 → R describe the evolution of x, y, θ, v, e1, e2 and d, re-
spectively. We prove that I satisfies the control-free invariance condition of Lemma
3.2 by applying Lemma 3.3.

First, we check that the conditions in Lemma 3.3 are satisfied. This analysis
appears in [Wongpiromsarn et al. 2008]. It does not involve solving differential
equations but relies on algebraic simplification of the expressions defining the vector
fields and the boundaries of the invariant set.

The next lemma shows that conditions (a)-(c) of Lemma 3.3 are satisfied. The
proof for j = 5 is presented here as an example.

Lemma 5.3. For each l ∈ L and j ∈ {1, . . . , 6}, the subtangential, bounded dis-
tance, and bounded speed conditions (of Lemma 3.3) are satisfied.

Proof. Define C5
∆= {s ∈ I | s.v ≤ vT }. We apply Lemma 3.4 to prove the

bounded distance and the bounded speed conditions. First, note that the pro-
jection of I onto the (e1, e2, v) space is compact and C5 is closed. Let UI =
{g(l, s) | l ∈ L, s ∈ I}. From the definition of I, it can be easily checked that
f is continuous in I × UI . In addition, s.v = vmax for any s ∈ ∂I5. Since
amax,∆ > 0, vmax = vT + ∆amax > vT . Therefore, C5 ∩ ∂I5 = ∅. Hence,
from Lemma 3.4, the bounded distance and bounded speed conditions are sat-
isfied. To prove the subtangential condition, we pick an arbitrary s ∈ ∂I5 and
s0 ∈ I \ C5. From the definitions of I and C5, vT < s0.v ≤ vmax. Therefore, for
any l ∈ L, either f4(s, g(l, s0)) = 0 or f4(s, g(l, s0)) = abrake and we can conclude
that ∂F5

∂s · f(s, g(l, s0)) = −f4(s, g(l, s0)) ≥ 0.

From the definition of each Cj , we can derive the lower bound cj on the distance
from Cj to ∂Ij and the upper bound bj on the length of the vector field f where
the control variable u is evaluated when the continuous state s ∈ Cj . Using these
bounds and Assumption 5.1(d), we prove the sampling rate condition.

Lemma 5.4. For each l ∈ L, the sampling rate condition is satisfied.

Thus, conditions (a)–(d) of Lemma 3.3 are satisfied; from Theorem 3.5 we obtain
that good execution fragments of A preserve invariance of I, provided that the
path and current segment do not change over the fragment. Hence, any plan-free
execution fragment, i.e., an execution fragment that does not contain a plan action,
preserves invariance of I as stated in the following theorem.

Theorem 5.5. For any plan-free execution fragment β starting at a state x ∈ I
and ending at x′ ∈ QA, if x.path = x.new path and x.seg = x′.seg, then x′ ∈ I.

5.3 Segment Progress

In this section, we establish the segment progress property, i.e., there exist certain
threshold values of deviation, disorientation, and waypoint-distance such that from
any state x with greater deviation, disorientation and waypoint-distance, the Vehicle
reduces its deviation and disorientation with respect to the current segment, while
making progress towards its current waypoint. First, we prove the progress property
over a pasted trajectory τ between any two main actions. That is, suppose right
after an occurrence of a main action, x ∈ Ik for some k ∈ N. Then, right before an
occurrance of the next main action, x ∈ Ik+1 where Ik+1 ⊆ Ik and if k is less than
some threshold k∗, then Ik+1 is strictly contained in Ik.

Next, in Lemma 5.7, we compute the bound d∗ on the maximum change in the
value of the waypoint distance d over τ . Given the progress property over τ and
the bound d∗, we can then establish the segment progress property defined at the
beginning of Section 5. That is, starting from a state x and ending at x′, if x ∈ Ik,
then x′ ∈ Ik+n where an integer n ≥ 0 depends on x.d − x′.d and the system
parameters, provided that path and current segment do not change. Furthermore,
if x.d− x′.d is large enough, then n is strictly positive.

By solving the differential equation that describes the evolution of e1 and e2 along
τ and using the periodicity of main actions, the next lemma provides the desired
progress property over τ . The proof appears in [Wongpiromsarn et al. 2008].

Lemma 5.6. Suppose τ.fstate ∈ Ik for some k ∈ N. Then τ.lstate ∈ Ik+1 whose
parameters εk+1 and φk+1 are given by εk+1 = εk− ε̂k and φk+1 = φk− φ̂k for some
ε̂k, φ̂k ≥ 0. In addition, there exists a natural number k∗ such that for any k < k∗,
ε̂k and φ̂k are strictly positive, that is, Ik+1 (Ik.

The precise definitions of ε̂k, φ̂k and k∗ are given in [Wongpiromsarn et al. 2008].
The plots showing the progress in the deviation and disoriantation are shown in
Figure 7(a) and Figure 7(b), respectively.

The following lemma provides the value of the bound d∗ on the maximum change
in the value of d over τ .

Lemma 5.7. Suppose τ.fstate ∈ Ik for some k ∈ N. For any t ∈ dom(τ), |(τ d
d)(t)− τ.fstate d d| ≤ d∗ where d∗ = vmax∆.

Proof. From Theorem 5.5, the definitions of F5 and F6 and the definition of
f7 that describes the evolution of d, we get that maxs,s0∈I ‖f7(s, g(l, s0))‖ ≤ vmax.
Since dom(τ) = [0,∆], we get |(τ ↓ d)(t)−τ.fstate d d| ≤ maxs,s0∈I ‖f7(s, g(l, s0))‖∆ ≤
vmax∆.

Using Lemma 5.6 and Lemma 5.7, we establish the relationship between the

progress of Ik’s and the decrease in the value of d. The complete proof can be
found in [Wongpiromsarn et al. 2008].

Lemma 5.8. For each k ∈ N, starting from any reachable state x ∈ Ik such that
x.d > vmax∆, x.path = x.new path and x.next = x.now, any plan-free execution
fragment β with β.ltime = ∆ satisfies β.lstate ∈ Ik+1 and β.lstate d d ≥ x.d −
vmax∆.

Finally, we conclude the section by establishing the segment progress property
defined at the beginning of Section 5.

Theorem 5.9. For each k ∈ N, starting from any reachable state x ∈ Ik, any
reachable state x′ is in Ik+n where n = max(bx.d−x′.d

vmax∆ c − 1, 0), provided that path
and current segment do not change.

Proof. Consider an arbitrary closed execution fragment β starting at x and
ending at x′. Since by assumption, β is a plan-free execution fragment such that
β.lstate d path = β.fstate d new path and β.lstate d seg = β.fstate d seg, from
Theorem 5.5, we know that β.lstate ∈ Ik. This completes the proof for the case
where bx.d−x′d

vmax∆ c − 1 ≤ 0.
Next, consider the case where bx.d−x′.d

vmax∆ c−1 > 0. From the structure of a PCHA,
we see that next = now every ∆ time. So, the first state in β such that next = now
occurs no later than time ∆. Using Lemma 5.7, we see that at this state, d ≥
x.d− vmax∆. Applying Lemma 5.8 and using an invariance of Ik for any k proved
in Theorem 5.5, we get that β1.lstate ∈ Ik+n where n = bx.d−vmax∆−x′.d

vmax∆ c.

A sequence of shrinking Ik’s visited by A in making progress towards a waypoint
is shown in Figure 7(c).

0 10 20 303.7

3.8

3.9

4

4.1

4.2

4.3

n

! k
,n

(a)

0 10 20 300.25

0.3

0.35

0.4

0.45

n

! k
,n

(b)

−0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7
−5
−4
−3
−2
−1
0
1
2
3
4
5

e2

e 1

(c)

Fig. 7. The progress in (a) deviation and (b) disorientation. (c) A sequence of shrinking Ik’s

visited by A in making progress towards a waypoint.

5.4 Safety and Waypoint Progress: Identifying Safe Planner Paths

In this section, we derive a sufficient condition on planner paths that can be safely
followed with respect to a candidate invariant set I0 whose parameters ε0 ∈ [0, emax]
and φ0 ∈ [0, φmax] satisfy Assumption 5.1 and are chosen such that I0 contains the
initial state Q0A. Then, we prove an invariance of I0 and conclude that the safety
and waypoint progress properties (A) and (B) defined at the beginning of Section
5 are satisfied.

The proof is structured as follows. First, we consider an execution fragment
where path does not change and starting with waypoint-distance not shorter than

some threshold D∗. Lemma 5.13 uses the segment progress property established
in Section 5.3 to prove that this execution fragment preserves an invariance of
I0. Then, in Lemma 5.14 and Lemma 5.15, we show that right after the path
changes, the waypoint-distance is not shorter than D∗ and the state of A remains
in I0. Using these results, Lemma 5.16 concludes that an execution fragment that
updates the path exactly once by the first main action preserves an invariance of
I0. Finally, we use Lemma 5.13 and Lemma 5.16 to conclude the section that I0 is
in fact an invariant of A and with this result, we conclude that the system satisfies
the safety and waypoint progress properties (A) and (B) defined at the beginning
of Section 5.

The following assumption provides sufficient conditions for planner paths that
can be safely followed. The key idea in the condition is: Longer path segments can
be succeeded by sharper turns. Following a long segment, the Vehicle reduces its
deviation and disorientation by the time it reaches the end; thus, it is possible for
the Vehicle to turn more sharply at the end without breaking an invariance of I0.

Assumption 5.10. (Planner paths) Let p0, p1, . . . be a planner path; for i ∈ N,
let λi be the length of the segment pipi+1 and σi be the difference in orientation of
pipi+1 and that of pi+1pi+2. Then, for each i ∈ {0, 1, . . .},
(a) λi ≥ 2vmax∆ + ε0.
(b) Let n = bλi−ε0−2vmax∆

vmax∆ c. Then, λi and σi satisfy the following conditions:

εn ≤
1

| cosσi|
(ε0 − vmax∆| sinσi|), (9)

φn ≤ φ0 − k1vmax∆ sin |σi| − k1εn(1− cosσi)− k2|σi|, (10)

where, given ε0 and φ0, εn and φn are defined recursively for any n > 0 by
εn = εn−1 − ε̂n−1 and φn = φn−1 − φ̂n−1 where for each k ∈ N, ε̂k and φ̂k are
defined in Lemma 5.6.

0 5 10 15 20
0

2

4

6

8

10

12

14

λ (m)

|σ
| (

de
gr

ee
)

L = 3, δ = 0.1

L = 3.5, δ = 0.1

L = 4, δ = 0.1

L = 3.5, δ = 0.05

L = 3.5, δ = 0.15

Fig. 8. Segment length vs. maximum
difference between consecutive segment

orientations, for different values of L
and δ.

The relationship between λ and the maxi-
mum value of σ which satisfies this assumption
is shown in Figure 8.

Remark 5.11. The choice of ε0’s and φ0’s af-
fects both the requirements on a safe path (As-
sumption 5.10) and the definition of a good
brake controller (Definition 5.2). Larger ε0’s
and φ0’s allow sharper turns in planned paths
but force brakes to occur only at higher speeds.
That is, relaxing the constraint on a path re-
sults in the tighter constraint on a brake action.
This tradeoff is related to the design flaw of Al-
ice as discussed in the introduction of the paper.
Without having quantified the tradeoff, we inadvertently allowed a path to have
sharp turns and also brakes at low speeds—thus violating safety.

To establish that I0 is an invariant of A, we further assume that (a) new planner
paths begin at the current position, (b) Vehicle is not too disoriented with respect
to new paths, and (c) Vehicle speed is not too high as stated in Assumption 5.12.

Assumption 5.12. (plan action and new path)

(a) Any new path p = p1p2 . . . satisfies p1 = [xp, yp] where xp and yp are the values
of the variable x and y, respectively, when the path is received (i.e., when the
plan action occurs). That is, for any new input path, the path must begin at
the current position of the Vehicle.

(b) Let vp and θp be the speed and the orientation of the Vehicle, respectively, when
a plan action occurs. Then, vp < ε0

∆
√

1+sin2 θ0,2
−amax∆ where given ε0 and φ0,

θ0,2 is defined as in (8). In addition, let p = p1p2 . . . be the received path and
let ~p be the vector that represents a straight line defined by p1 and p2. Then,

|∠~p− θp| ≤
φ0

k2
− (vp + amax∆)∆

(
k1

k2

√
1 + sin2 θ0,2 +

tanφ0

L

)
.

First, we consider an execution fragment where path does not change and starting
with a large enough waypoint-distance. Using the progress property established in
Section 5.3, the update rule of the variable seg and Lemma 5.7, we can show that
before switching to the next segment, x ∈ In where n ≥ 0 depends on the segment
length. (See [Wongpiromsarn et al. 2008] for the complete proof.) Since we restrict
the sharpness of the turn with respect to segment length (Assumption 5.10), we
can then conclude that this execution fragment preserves an invariance of I0.

Lemma 5.13. Consider a plan-free execution fragment β starting at a state x ∈ I0.
Suppose x.path = x.new path and x.d ≥ D∗ where D∗ = λ1 − ε0 − vmax∆ and λ1

is the length of the segment x.seg. Then β.lstate ∈ I0.

The next two lemmas show that Assumption 5.12 is sufficient to guarantee that
if the path changes, then all the assumptions in the Lemma 5.13 are satisfied. All
the proofs appear in [Wongpiromsarn et al. 2008].

Lemma 5.14. For each state x,x′ ∈ Q such that x.path 6= x.new path, if x ∈ I0

and x main→ x′, then x′.d ≥ λ− vmax∆ > 0 where λ is the length of the first segment
of x.new path.

Lemma 5.15. For each state x,x′ ∈ Q such that x.path 6= x.new path, if x ∈ I0

and x main→ x′, then x′ ∈ I0.

Using the previous three lemmas, the following lemma concludes that an execu-
tion fragment that updates the path exactly once by the first main action preserves
an invariance of I0.

Lemma 5.16. Consider a plan-free execution fragment β starting at a state x ∈ I0.
If x.path 6= x.new path, then β.lstate ∈ I0.

Proof. β can be written as β = β1mainβ2 where β1 = τ0brakeτ1brake . . . τn and
β2 is a plan-free execution fragment with β2.fstate d path = β2.fstate d new path.
Clearly, β1.lstate d path 6= β1.lstate d new path. In addition, β1.fstate ∈ I0 and
thus, from Theorem 5.5, β1.lstate ∈ I0. Applying Lemma 5.14 and Lemma 5.15,
we see that β2.fstate d d ≥ λ1− vmax∆ ≥ λ1− ε0− vmax∆ and β2.fstate ∈ I0 where
λ1 is the length of the first segment of x.new path. Therefore, from Lemma 5.13,
β.lstate ∈ I0.

Finally, we conclude that I0 is an invariant of A.
Theorem 5.17. Suppose the initial state x0 ∈ I0 and x0.d ≥ λ1−ε0−vmax∆ where
λ1 is the length of the first segment of the initial path. Then, I0 is an invariant of
A.

Proof. Any execution α can be written as α = β1planβ2plan . . . where β1 is a
plan-free execution fragment with β1.fstate d path = β1.fstate d new path and for
any i ≥ 2, βi is a plan-free execution fragment with βi.fstate d path 6= βi.fstate d
new path. Since plan action does not affect the variable s, if β1.lstate ∈ I0, then
β2.fstate ∈ I0 and using Lemma 5.16, we get that for any i ≥ 2, βi.lstate ∈ I0.
Thus, we only need to show that β1.lstate ∈ I0. But this is true from Lemma 5.13
since β1.fstate d d = x0.d ≥ λ1 − ε0 − vmax∆ and β1.fstate ∈ I0.

Since for any state x ∈ I0, |x.e1| ≤ ε0 ≤ emax, invariance of I0 guarantees
the safety property (A). For property (B), we note that for any state x ∈ I0,
there exists vmin > 0 such that x.v ≥ vmin > 0 and |x.e2| ≤ θ0,2 <

π
2 , that is,

ḋ = f7(x.s, u) ≤ −vmin cos θ0,2 < 0 for any u ∈ U . Thus, it follows that the
waypoint distance decreases and the Vehicle makes progress towards its waypoint.

The simulation results are shown in Figure 9, which illustrate that the Vehicle
is capable of making a sharp left turn, provided that the path satisfies Assump-
tion 5.10. In addition, we are able to replicate the stuttering behavior described in
the Introduction when Assumption 5.10 is violated.

−40 −30 −20 −10 0 10
−20

−15

−10

−5

0

5

10

15

Total Time: 9.6s

x (m)

y
(m

)

−40 −30 −20 −10 0 10
−20

−15

−10

−5

0

5

10

15

Total Time: 25.7s

x (m)

y
(m

)

Fig. 9. The positions of Alice (dashed line) as it follows a path (solid line) to execute a
sharp left turn. When brake is triggered a thick dashed (red) line is drawn on the position
of Alice. Left. The path satisfies Assumption 5.10. Right. The path does not satisfy the
assumption and the replan occurs due to excessive deviation.

6. CONCLUSIONS

Motivated by a design bug that caused an unsafe behavior of an autonomous ve-
hicle (Alice) built at Caltech for the 2007 DARPA Urban Challenge, this paper
introduced Periodically Controlled Hybrid Automata, a subclass of Hybrid I/O
Automata that is suitable for modeling embedded control systems with periodic
sensing and actuation. New sufficient conditions for verifying invariant properties
of PCHAs were presented. For PCHAs with polynomial continuous vector fields,
it is possible to check these conditions automatically using, for example, quantifier
elimination or sum of squares decomposition.

We then applied the proposed technique to manually verify a sequence of invariant
properties of the planner-controller subsystem of Alice. Geometric properties of
planner generated paths were derived that guarantee that such paths can be safely
followed by the controller. The analysis revealed that the software design was not
inherently flawed; the undesirable behavior was caused by an unfortunate choice of
certain parameters. The simulation results verified that with the proper choice of
parameters, the observed failure does not occur.

An interesting direction for future research is towards automatic invariant proofs
of PCHAs combining the proofs for invariance of control steps and for invariance
of control-free fragments based on the results of Lemma 3.2. Invariance of control
steps can be partially automated using a theorem prover while invariance of control-
free fragments can be automated using software tools for solving sum of squares
problems (e.g. SOSTOOLS [Prajna et al. 2002]) or software tools for quantifier
elimination (e.g. QEPCAD [Brown 2003], the constraint-based approach [Gulwani
and Tiwari 2008]). We are currently examining a collection of PCHAs with poly-
nomial dynamics for which this direction is promising. Another direction of future
research is related to the progress property. Although the basic principle is straight-
forward, the details of the progress proof in Sections 5.3 and 5.4 are quite involved.
This is partly owing to the difficulty of finding the appropriate Lyapunov functions.
In the future, we plan on investigating this further and use ideas from [Chandy et al.
2008] for the progress proof.

7. ACKNOWLEDGMENTS

The authors gratefully acknowledge Sumit Gulwani and Ashish Tiwari for letting
us use their nonlinear solver for solving ∃∀ problems.

REFERENCES

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P.-H., Nicollin, X.,

Olivero, A., Sifakis, J., and Yovine, S. 1995. The algorithmic analysis of hybrid systems.

Theoretical Computer Science 138, 1, 3–34.

Bhatia, N. P. and Szegö, G. P. 1967. Dynamical Systems: Stability Theory and Applications.

Lecture notes in mathematics, vol. 35. Springer-Verlag, Berlin; New York.

Brown, C. W. 2003. QEPCAD b: a program for computing with semi-algebraic sets using cads.

SIGSAM Bull. 37, 4, 97–108.

Burdick, J. W., DuToit, N., Howard, A., Looman, C., Ma, J., Murray, R. M., and Wong-
piromsarn, T. 2007. Sensing, navigation and reasoning technologies for the DARPA Urban

Challenge. Tech. rep., DARPA Urban Challenge Final Report.

Chandy, K. M., Mitra, S., and Pilotto, C. 2008. Convergence verification: From shared
memory to partially synchronous systems. In Proceedings of Formal Modeling and Analysis

of Timed Systems (FORMATS‘08). Lecture Notes in Computer Science, vol. 5215. Springer

Verlag, 217–231.

DuToit, N. E., Wongpiromsarn, T., Burdick, J. W., and Murray, R. M. 2008. Situational
reasoning for road driving in an urban environment. In International Workshop on Intelligent
Vehicle Control Systems (IVCS).

Fainekos, G. E., Girard, A., Kress-Gazit, H., and Pappas, G. J. 2009. Temporal logic motion
planning for dynamic robots. Automatica 45, 2, 343–352.

Gulwani, S. and Tiwari, A. 2008. Constraint-based approach for analysis of hybrid systems. In

Computer Aided Verification, A. Gupta and S. Malik, Eds. Lecture Notes in Computer Science,

vol. 5123. Springer, 190–203.

Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P. 1995. What’s decidable about
hybrid automata? In ACM Symposium on Theory of Computing. 373–382.

Kaynar, D. K., Lynch, N., Segala, R., and Vaandrager, F. 2005. The Theory of Timed

I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool. Also available as
Technical Report MIT-LCS-TR-917.

Kloetzer, M. and Belta, C. 2006. A fully automated framework for control of linear systems

from LTL specifications. In Hybrid Systems: Computation and Control, J. P. Hespanha and
A. Tiwari, Eds. LNCS, vol. 3927. Springer, 333–347.

Lafferriere, G., Pappas, G. J., and Yovine, S. 1999. A new class of decidable hybrid systems.

In Hybrid Systems: Computation and Control, F. W. Vaandrager and J. H. van Schuppen, Eds.

LNCS, vol. 1569. Springer, 137–151.

Lynch, N., Segala, R., and Vaandrager, F. 2003. Hybrid I/O automata. Information and
Computation 185, 1 (August), 105–157.

Mitra, S. 2007. A verification framework for hybrid systems. Ph.D. thesis, Massachusetts Insti-

tute of Technology, Cambridge, MA 02139.

Mitra, S., Wang, Y., Lynch, N., and Feron, E. 2003. Safety verification of model helicopter
controller using hybrid Input/Output automata. In Hybrid Systems: Computation and Control,

O. Maler and A. Pnueli, Eds. LNCS, vol. 2623. Springer, 343–358.

Owre, S., Rajan, S., Rushby, J., Shankar, N., and Srivas, M. 1996. PVS: Combining specifi-

cation, proof checking, and model checking. In Computer-Aided Verification, CAV ’96, R. Alur
and T. A. Henzinger, Eds. Number 1102 in Lecture Notes in Computer Science. Springer-Verlag,

New Brunswick, NJ, 411–414.

Platzer, A. and Clarke, E. M. 2008. Computing differential invariants of hybrid systems as
fixedpoints. In Computer-Aided Verification, A. Gupta and S. Malik, Eds. Lecture Notes in

Computer Science, vol. 5123. Springer, 176–189.

Prabhakar, P., Vladimerou, V., Viswanathan, M., and Dullerud, G. E. 2008. A decidable

class of planar linear hybrid systems. In Hybrid Systems: Computation and Control, M. Egerst-
edt and B. Mishra, Eds. LNCS, vol. 4981. Springer, 401–414.

Prajna, S. and Jadbabaie, A. 2004. Safety verification of hybrid systems using barrier certifi-

cates. In Hybrid Systems: Computation and Control, R. Alur and G. J. Pappas, Eds. LNCS,
vol. 2993. Springer, 477–492.

Prajna, S., Papachristodoulou, A., and Parrilo, P. A. 2002. Introducing SOSTOOLS: A

general purpose sum of squares programming solver. In Proceedings of the 41st IEEE Conf. on

Decision and Control. 741–746.

Sankaranarayanan, S., Sipma, H. B., and Manna, Z. 2008. Constructing invariants for hybrid

systems. Formal Methods in System Design 32, 1, 25–55.

Topcu, U., Packard, A., and Seiler, P. 2008. Local stability analysis using simulations and

sum-of-squares programming. Automatica 44, 2669 – 2675.

Vladimerou, V., Prabhakar, P., Viswanathan, M., and Dullerud, G. E. 2008. STORMED
hybrid systems. In ICALP (2). LNCS, vol. 5126. Springer, 136–147.

Wongpiromsarn, T., Mitra, S., Murray, R., and Lamperski, A. 2008. Periodically controlled

hybird systems: Verifying a controller for an autonomous vehicle. Tech. Rep. CaltechCD-
STR:2008.003, California Institute of Technology. Full version: http://resolver.caltech.

edu/CaltechCDSTR:2008.003.

Wongpiromsarn, T., Mitra, S., Murray, R. M., and Lamperski, A. 2009. Periodically con-

trolled hybrid systems: Verifying a controller for an autonomous vehicle. In Hybrid Systems:
Computation and Control, R. Majumdar and P. Tabuada, Eds. LNCS, vol. 5469. Springer,

396–410.

Wongpiromsarn, T. and Murray, R. M. 2008. Distributed mission and contingency man-
agement for the DARPA urban challenge. In International Workshop on Intelligent Vehicle

Control Systems (IVCS).

Received July 2009; January 2010; accepted June 2010

