
April 30, 2013 9:38 us12

Unmanned Systems, Vol. 0, No. 0 (2013) 1–19
c© World Scientific Publishing Company

Synthesis of Control Protocols for Autonomous Systems

Tichakorn Wongpiromsarna, Ufuk Topcub, Richard M. Murrayc

aMinistry of Science and Technology, Bangkok, Thailand
E-mail: tichakorn@gmail.com

bUniversity of Pennsylvania, Philadelphia, PA, USA
E-mail: utopcu@seas.upenn.edu

cCalifornia Institute of Technology, Pasadena, CA, USA
E-mail: murray@cds.caltech.edu

This article provides a review of control protocol synthesis techniques that incorporate methodologies from formal methods and
control theory to provide correctness guarantee for different types of autonomous systems, including those with discrete and
continuous state space. The correctness of the system is defined with respect to a given specification expressed as a formula in
linear temporal logic to precisely describe the desired properties of the system. The formalism presented in this article admits non-
determinism, allowing uncertainties in the system to be captured. A particular emphasis is on alleviating some of the difficulties,
e.g., heterogeneity in the underlying dynamics and computational complexity, that naturally arise in the construction of control
protocols for autonomous systems.

Keywords: Autonomous systems; control architecture; linear temporal logic; receding horizon control

1. Introduction

Unmanned systems have the potential to improve man-
power efficiencies and increase capabilities by augmenting
or exceeding humans’ capabilities. On the other hand, re-
alization of this potential heavily relies on the autonomous
functionalities these systems can deliver. Despite a number
of proof-of-concept demonstrations, including the vehicles
in the DARPA Urban Challenge [1] and Google driverless
car [2], integration of autonomy has been slow. Take the
status of the current generation of remotely-piloted air-
craft as an example. The operator is still responsible for
most of the functionalities, for example mission planning,
generating and modifying tactics and contingency manage-
ment. The functionality delegated to the vehicle is limited
to straightforward, low-level tasks, for example point-to-
point navigation or following pre-specified path segments.

One of the challenges in greater integration of auton-
omy is the lack of a suitable formalism for verifying system
properties. Consequently, the design flow is often ad hoc
and establishing trustworthiness of the systems is left to
post-design simulations and testing. In particular, advances
are needed in two directions: (i) Mathematically-based lan-
guages for unambiguously specifying the requirements the
system needs to obey and properties of the environment in
which the systems operates. The requirements and proper-
ties are often expressed as both high-level mission specifica-

tions and low-level constraints, e.g. actuation limitations.
(ii) Automated methods to carry of the design of the con-
trol protocols specified in these languages. These design
artifacts should either be amenable to post-design verifica-
tion or correct (with respect to the formal specifications)
by construction.

This article surveys recent progress in the specification
and correct-by-construction synthesis of control protocols
for autonomous systems to address the two needs above.
The methods discussed in the article merge concepts from
formal methods, including formal specification languages
and discrete protocol synthesis, and those from controls,
including optimization-based control and receding horizon
implementations. A particular emphasis is on alleviating
some of the difficulties, e.g., heterogeneity in the underly-
ing dynamics and computational complexity, that naturally
arise in the construction of autonomous protocols.

In the rest of the article, we discuss linear temporal
logic [3–5] as a candidate specification language. We then
formulate a protocol synthesis problem. The solution we
present yields a hierarchical control structure for systems
with either continuous or continuous and discrete dynam-
ics. Each layer of the hierarchy uses a different model of
the system and is responsible for ensuring the correctness
of a different view of the constraints and specifications. The
higher level uses a finite-state model of the system and is
roughly responsible for the temporal logic specifications. Its

1

April 30, 2013 9:38 us12

2 T. Wongpiromsarn, U. Topcu and R. M. Murray

construction relies on discrete protocol synthesis methods
from formal methods [3,6,7]. The lower level uses a hybrid
model (possibly with both continuous states and discrete
modes) and is responsible for the correct implementation of
the discrete directives issued by the higher level. The consis-
tency between the two layers is ensured by the construction
of a finite-state abstraction used by the higher-level. This
construction is based on a series of finite-time, controlled
reachability problems [8].

A third layer, which is inspired by the receding-horizon
horizon control, aims to alleviate the computational com-
plexity in reactive controller synthesis due to the possibly
large number discrete states and branchings in the admis-
sible environment behaviors. This layer uses a cruder ab-
straction and essentially decomposes the “long-horizon” re-
active synthesis problem into “shorter-horizon” problems.
Under certain conditions, the controllers from these short-
horizon problems—when implemented in a receding hori-
zon fashion—ensure the correctness with respect to the
original, long-horizon specifications.

The material presented in the article builds on ear-
lier research on formal methods [3,6,7] and recent work by
the authors [8–12]. The rest of the article is organized as
follows: Section 2 presents a case study of an autonomous
system that motivates the developments discussed in this
article. Section 3 summarizes formalisms used in this ar-
ticle for specifying systems and their requirements. Sec-
tion 4.1 formulates a control protocol synthesis problem
for autonomous systems. Section 4.2 presents a hierarchi-
cal control structure with two layers as a solution for this
control protocol synthesis problem and describes correct-
by-construction design for each layer as well as the con-
struction of a finite-state abstraction of the physical sys-
tem to ensure consistency between the two layers. Discrete
protocol synthesis that enables correct-by-construction de-
sign of the higher layer is described in Section 5 and 6 for
the case of deterministic and non-deterministic systems,
respectively. Section 7 describes a method inspired by the
receding-horizon horizon control to alleviate the computa-
tional complexity in reactive controller synthesis. A soft-
ware toolbox implementing the approach presented in this
article is described in Section 8. Finally, Section 9 presents
the concluding remarks and open problems.

2. Motivating Example

Alice, an autonomous vehicle shown in Fig. 1, was built at
the California Institute of Technology to compete in the
2007 DARPA Urban Challenge [1,13]. The competition re-
quired all the competing vehicles to navigate, in a fully
autonomous manner, through a partially known urban-like
environment populated with static and dynamic obstacles,
including live traffic, while obeying traffic rules. In addi-
tion, the vehicles had to complete different tasks specified
by a sequence of checkpoints that the vehicle had to cross.
These tasks involved on- and off-road driving, parking, ne-
gotiating intersections and making U-turns. Hence, for the

vehicles to successfully complete a given task, they needed
to be capable of handling changes in their environment or
operating condition (e.g. newly discovered obstacles) and
reactively replanning in response to those changes (e.g.
making a U-turn and finding a new route when the newly
discovered obstacles fully block the road).

Mission
Planner

Traffic
Planner

Path
Planner

Path
Follower

Gcdrive

Vehicle

route

path planning problem

path

actuation commands

actuation commands actuator state

response

response

response

response

emergency stop

vehicle state

vehicle & environment states

vehicle & environment states

vehicle & environment states

Fig. 1. Top. Alice, Team Caltech’s entry in the 2007 DARPA
Urban Challenge. Bottom. Alice’s navigation protocol stack that
reactively determines the motion of the vehicle based on the cur-
rent state of its environment (as perceived by the sensing and
estimation subsystems).

Alice was equipped with 25 CPUs and utilized a net-
worked control system architecture to provide high perfor-
mance and modular design. Its autonomous navigation re-
lies on a protocol stack with the following software modules
(Fig. 1) [13–15]:

• Mission Planner computes the route, i.e., a se-
quence of roads the vehicle has to navigate in or-
der to cross a given sequence of checkpoints. It is
also capable of re-computing the route when the re-
sponse from Traffic Planner indicates that the pre-
viously computed route cannot be navigated suc-

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 3

cessfully. This type of failure occurs, for example,
when the road is blocked.
• Traffic Planner makes decisions to guide Alice at

a high level. Specifically, based on the traffic rules
and the current environment, it determines how
Alice should navigate the route generated by Mis-
sion Planner, that is, whether it should stay in the
travel lane or perform a passing maneuver, whether
it should go or stop and whether it is allowed to
reverse. In addition, it is responsible for intersec-
tion handling (e.g. keeping track of whether it is
Alice’s turn to go through an intersection). Based
on these decisions, it sets up the constraints for the
path planning problem.
• Path Planner generates a path that satisfies the

directives and constraints determined by Traffic
Planner.
• Path Follower computes control signals (e.g., ac-

celeration and steering angle) such that the vehicle
closely follows the path generated by Path Planner.
• Gcdrive is the low-level driving software for Al-

ice. It contains logic to protect the physical hard-
ware and only allows valid actuation commands
computed by Path Follower to be executed by
the actuators. Examples of the hardware protec-
tion logic include limiting the steering rate at low
speeds and preventing shifting from occuring while
the vehicle is moving. Furthermore, Gcdrive imple-
ments the emergency stop functionality for Alice
and stops the vehicle when an externally-produced
emergency stop command is received.

The particular protocol stack for Alice was designed
and implemented completely by hand mostly in an ad-
hoc manner. Although individual software modules were
partially verified, the complete system was only validated
through simulations and field tests. Detailed analysis after
the competition, however, revealed an unforeseen interac-
tion among the control modules and the physical environ-
ment that had not been witnessed in more than 300 miles of
autonomous driving tests and thousands of hours of exten-
sive simulations [16]. Such an unexpected interaction arose
due to a mismatch in the abstraction of the physical system
used at different levels of the hierarchy and under special
circumstances that unfortunately included one of the tasks
at the National Qualifying Event, led to unsafe behavior,
causing Alice to get disqualified from the competition.

Alice exemplifies many autonomous systems, including
other autonomous vehicles [1], in which navigation or con-
trol protocols are so complicated that only partial correct-
ness guarantee can be provided through individual compo-
nent analysis, simulations and field tests. In this article, we
present formalisms and techniques that allow such proto-
cols to be automatically designed with correctness guaran-
tees. We employ formalisms from formal methods, includ-
ing both modeling frameworks and specification languages
to precisely describe the system and its correct behavior,
respectively [3–5, 8]. With the precise description of both

the system and its correct behavior, we describe techniques
and tools from control theory and computer science that al-
low a control protocol that guarantees the correct behavior
of the system to be automatically designed.

3. Preliminaries

In this article, we use the formalisms from formal methods
as explained in [3] to describe systems and their correct
behavior. We summarize those formalisms in this section
and refer the reader to [3] for more details. Given a set
X, let X∗, Xω and X+ denote the set of finite, infinite
and nonempty finite strings, respectively, of X and let |X|
denote the cardinality of X. For sequences π, π1 and π2,
let π1π2 denote a sequence obtained by concatenating π1

and π2 and let πω denote an infinite sequence obtained by
concatenating π infinitely many times.

3.1. Transition Systems

A transition system is a mathematical description of the
behavior of systems with discrete inputs, outputs, internal
states and transitions between the states. Its behavior is
formalized by atomic propositions that express important
characteristics of individual states of the system. Roughly,
a proposition is a statement that can be either true or false,
but not both. An atomic proposition is a proposition whose
truth or falsity does not depend on the truth or falsity of
any other proposition. For example, a statement “Traffic
light is green” is an atomic proposition whereas a state-
ment “Traffic light is either green or red” is not an atomic
proposition.

Definition 3.1. A transition system TS is a tuple TS =
(S,Act,→, I, AP,L), where

• S is a set of states,
• Act is a set of actions,
• →⊆ S ×Act× S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions and
• L : S → 2AP is a labeling function.

We use the relation notation, s
α→ s′, to denote

(s, α, s′) ∈→. TS is called finite if S, Act and AP are finite.

Complex systems are typically composed of multiple
components that can be executed at the same time. Such
systems are referred to as “concurrent systems”. Suppose
each component of the system can be modeled by a tran-
sition system. Under the assumption of synchronous op-
eration of all the components, the complete system can be
constructed based on the composition (by hand-shaking) of
the transition systems representing individual components
as follows.

Definition 3.2. Let TS1 = (S1, Act1,→1, I1, AP1, L1)
and TS2 = (S2, Act2,→2, I2, AP2, L2) be transition sys-
tems. Their parallel composition, TS1||TS2 is the transition

April 30, 2013 9:38 us12

4 T. Wongpiromsarn, U. Topcu and R. M. Murray

system defined by

TS1||TS2 = (S1×S2, Act1∪Act2,→, I1×I2, AP1∪AP2, L),

where L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and → is defined by
the following rules:

• If α ∈ Act1 ∩ Act2, s1
α→ s′1 and s2

α→ s′2, then
〈s1, s2〉 α→ 〈s′1, s′2〉.
• If α ∈ Act1 \ Act2 and s1

α→ s′1, then 〈s1, s2〉 α→
〈s′1, s2〉.
• If α ∈ Act2 ∩ Act1 and s2

α→ s′2, then 〈s1, s2〉 α→
〈s1, s

′
2〉.

Example 1. Consider a system of traffic lights shown
in Fig. 2. For i ∈ {1, 2}, we let gi denote an
atomic proposition stating that light Ti is green. Then,
T1 = (S1, Act1,→1, I1, AP1, L1) is a finite transition
system where S1 = {s1,1, s1,2}, Act1 = {α1}, →1=
{(s1,1, α1, s1,2), (s1,2, α1, s1,1)}, I1 = {s1,1}, AP1 = {g1}
and L : S1 → 2AP1 is defined by L(s1,1) = ∅ and
L(s1,2) = {g1}. Also, T2 = (S2, Act2,→2, I2, AP2, L2) is
a finite transition system where S2 = {s2,1, s2,2}, Act2 =
{α2}, →2= {(s2,1, α2, s2,2), (s2,2, α2, s2,1)}, I2 = {s2,1},
AP2 = {g2} and L : S2 → 2AP2 is defined by L(s2,1) = ∅
and L(s1,2) = {g2}. Fig. 3 shows the graphical representa-
tion of T1, T2 and their parallel composition T1||T2.

T1

T1T2

T2

Fig. 2. A system of traffic lights considered in Example 1.

s1,1

s1,2

α1α1

{g1}

�

T1

s2,2

s2,1

α2α2

�

{g2}
T2

α2

α2 {g2}
α1α1

{g1}

�
s1,1, s2,1 s1,1, s2,2

s1,2, s2,2s1,2, s2,1 {g1, g2}
α1 α1α2

α2

T1��T2

Fig. 3. The transition systems representing the models of traf-
fic lights in Example 1.

Given a transition system TS = (S,Act,→, I, AP,L),
s ∈ S and α ∈ Act, we let Act(s) = {α ∈ Act : ∃s′ ∈
S such that s α→ s′} denote the set of enabled actions
in s, Post(s, α) = {s′ ∈ S : s α→ s′} and Post(s) =⋃
α∈Act Post(s, α) denote the set of direct successors of

s. We say that TS is action-deterministic if and only if
|I| ≤ 1 and |Post(s, α)| ≤ 1 for all s ∈ S and α ∈ Act.

A sequence of states, either finite π = s0s1 . . . sn, or in-
finite π = s0s1 . . ., is a path fragment if si+1 ∈ Post(si)
for all i ≥ 0. A path is a path fragment such that s0 ∈ I
and it is either a finite path fragment that ends in a state
s with Post(s) = ∅ or an infinite path fragment. We
denote the set of paths in TS by Path(TS). The trace
of an infinite path fragment π = s0s1 . . . is defined by
trace(π) = L(s0)L(s1) The set of traces of TS is de-
fined by Trace(TS) = {trace(π) : π ∈ Path(TS)}.
Remark 3.3. Transition systems that are not action-
deterministic are those in which some action, when applied
in some state, leads to several possible next states. Hence,
they can be used to capture uncertainties in the system,
especially those arise from difference choices of valid en-
vironment behavior over which the system does not have
control.

3.2. Linear Temporal Logic

Linear temporal logic (LTL) is a formal language for de-
scribing linear-time properties. Its use as a specification
language was introduced by Pnueli in the 1970s [17]. Since
then, LTL has been demonstrated to be an appropriate
specification language for reasoning about various kinds of
systems, including programs and resource allocators [18],
artificial intelligence [19] and discrete event systems [20,21].

An LTL formula is built up from a set of atomic propo-
sitions and two kinds of operators: logical connectives and
temporal modal operators. The logic connectives are those
used in propositional logic: negation (¬), disjunction (∨
), conjunction (∧) and material implication (=⇒). The
temporal modal operators include next (#), always (�),
eventually (3) and until (U). Specifically, an LTL formula
over a set AP of atomic propositions is inductively defined
as follows:

(1) True is an LTL formula,
(2) any atomic proposition p ∈ AP is an LTL formula and
(3) given LTL formulas ϕ, ϕ1 and ϕ2, ¬ϕ, ϕ1 ∨ ϕ2, #ϕ

and ϕ1 U ϕ2 are also LTL formulas.

Additional operators can be derived from the logical con-
nectives ∨ and ¬ and the temporal modal operator U
. For example, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 =⇒ ϕ2 =
¬ϕ1 ∨ ϕ2, 3ϕ = True U ϕ and �ϕ = ¬3¬ϕ.

LTL formulas are interpreted on infinite strings σ =
σ0σ1σ2 . . . where σi ∈ 2AP for all i ≥ 0. Such infinite strings
are referred to as words. The satisfaction relation is denoted
by |=, i.e., for a word σ and an LTL formula ϕ, we write
σ |= ϕ if and only if σ satisfies ϕ. The satisfaction relation
is defined inductively as follows:

• σ |= True,
• for an atomic proposition p ∈ AP , σ |= p if and

only if p ∈ σ0,
• σ |= ¬ϕ if and only if σ 6|= ϕ,
• σ |= ϕ1 ∧ ϕ2 if and only if σ |= ϕ1 and σ |= ϕ2,
• σ |= #ϕ if and only if σ1σ2 . . . |= ϕ and

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 5

• σ |= ϕ1 U ϕ2 if and only if there exists j ≥ 0
such that σjσj+1 . . . |= ϕ2 and for all i such all
0 ≤ i < j, σiσi+1 . . . |= ϕ1.

Let ϕ be an LTL formula over AP . The linear-time
property induced by ϕ is defined as Words(ϕ) = {σ ∈
(2AP)ω : σ |= ϕ}. Given a transition system TS, its infi-
nite path fragment π and an LTL formula ϕ over AP , we
say that π satisfies ϕ, denoted π |= ϕ, if trace(π) |= ϕ.
Finally, we say that TS satisfies ϕ, denoted TS |= ϕ, if
Trace(TS) ⊆Words(ϕ).

Given a proposition p, examples of widely used LTL
formulas include a safety formula of the form �p (read as
“always p”) and a reachability formula of the form 3p (read
as “eventually p”). A word satisfies �p if p remains invari-
antly true at all positions of the word whereas it satisfies
3p if p becomes true at least once in the word. By combin-
ing the temporal operators, we can express more complex
properties. For example �3p states that p holds infinitely
often in the word.

Example 2. Consider the system of traffic lights de-
scribed in Example 1. Its desired properties might include:

• “At least one of the lights is always on” is a
safety property and can be expressed in LTL as
�(g1 ∨ g2).

• “Two lights are never green at the same time” is
also a safety property and can be expressed in LTL
as �(¬g1 ∨ ¬g2).

• “T1 will turn green infinitely often” is known as a
“progress” property and can be expressed in LTL
as �3g1.

Example 3. As described in Section 2, an autonomous
vehicle competing in the DARPA Urban Challenge is re-
quired to follow traffic rules as well as completing a task
specified by a sequence of checkpoints that the vehicle has
to cross. This autonomous driving problem is simplified in
Fig. 4. Examples of some desired properties and LTL for-
mulas expressing those properties are given below.

Traffic rules:

• No collision: �
(
dist(x,Obs) ≥ Xsafe ∧

dist(x, Loc(V eh)) ≥ Xsafe

)
where dist is a dis-

tance function, Obs and Loc(V eh) represent the
positions of the nearest obstacle and vehicle, re-
spectively, and Xsafe is a pre-specified parameter
for the required safety distance.

• Obey speed limits: �
(
(x ∈ Reduced Speed Zone) =⇒

(v ≤ vreduced)
)

where vreduced is a pre-specified
parameter for the maximum speed in Re-
duced Speed Zone.

Goals:

• Eventually visit the checkpoint: 3(x = ck pt)
where ck pt denote the position of the checkpoint.

Note that, dist(x,Obs) ≥ Xsafe, dist(x, Loc(V eh)) ≥

Xsafe, x ∈ Reduced Speed Zone and v ≤ vreduced are con-
sidered to be atomic propositions in this example as they
are evaluated to either true or false, given the state (x, v,
Obs and Loc(V eh)) of the system.

position : x

Ufuk Topcu

Reduced Speed Zone ck pt

Fig. 4. A simplified autonomous driving problem considered in
Example 3.

Remark 3.4. Properties typically studied in the control
and hybrid systems domains are safety (usually in the form
of constraints on the system state) and stability (i.e., con-
vergence to an equilibrium or a desired state). However,
these properties are not rich enough to describe desired
properties of many autonomous systems. For example, de-
sired properties of an autonomous vehicle such as staying
in the travel lane unless there is an obstacle blocking the
lane and visiting a certain area infinitely often cannot be
expressed in terms of safety and stability only. The expres-
siveness of LTL allows such properties to be specified.

Timed extensions of temporal logics include metric
temporal logic [22] and timed computation tree logic [3],
allowing timing requirements to be incorporated. Proba-
bilistic temporal logics such as computation tree logic have
also been introduced to capture the probabilistic aspect
and allow quantitative reasoning of systems with uncer-
tainties [3].

3.3. Automata

Finite state automata provide another representation of
linear-time properties that can be handled computation-
ally. Furthermore, as we will see later, there is a tight rela-
tionship between LTL and finite state automata that will
be exploited in control protocol synthesis.

Definition 3.5. A non-deterministic Buchi automaton
(NBA) is a tuple A = (Q,Σ, δ, Q0, F) where

• Q is a finite set of states,
• Σ is a finite set, called an alphabet,
• δ ⊆ Q× Σ×Q is a transition relation,
• Q0 ⊆ Q is a set of initial states and
• F ⊆ Q is a set of accepting (or final) states.

We use the relation notation, q σ−→ q′, to denote (q, σ, q′) ∈
δ.

Consider an infinite string σ = σ0σ1 . . . ∈ Σω. A run
for σ in an NBA A = (Q,Σ, δ, Q0, F) is an infinite sequence
of states q0q1 . . . such that q0 ∈ Q0 and qi

σi−→ qi+1 for all
i ≥ 0. A run is accepting if there exist infinitely many j ≥ 0
such that qj ∈ F . A string σ ∈ Σω is accepted by A if there
is an accepting run of σ in A. The language accepted by

April 30, 2013 9:38 us12

6 T. Wongpiromsarn, U. Topcu and R. M. Murray

A, denoted by Lω(A), is the set of all accepted strings of
A. A set of infinite strings Lω ⊆ Σω is called an ω-regular
language if there is an NBA A such that Lω = Lω(A).

It can be shown that for any LTL formula ϕ over AP ,
there exists an NBA Aϕ with alphabet Σ = 2AP that ac-
cepts all words and only those words over AP that satisfy
ϕ, i.e., Lω(Aϕ) = Words(ϕ) = {σ ∈ (2AP)ω : σ |= ϕ} [3].
Such Aϕ can be automatically constructed using existing
tools [23] with the worst-case complexity that is exponen-
tial in the length of ϕ.

Example 4. An NBA that recognizes (i.e., accepts all
and only words satisfying) each of the desired properties of
the traffic light system in Example 2 is shown in Fig. 5. For
example, an accepting run of the automaton in Fig. 5(a),
needs to visit state q0 infinitely often. Hence, either g1 or g2

has to be included at all the positions in a string accepted
by this automaton. As a result, this automaton accepts all
the only words satisfying an LTL formula �(g1 ∨ g2).

q0

g1 ∨ g2

(a)�(g1 ∨ g2)

q0

¬g1 ∨ ¬g2

(b)�(¬g1 ∨ ¬g2)

q0 q1

g1

True

True

g1

(c)�3g1

Fig. 5. Non-deterministic Buchi automata that recognize the
desired properties of the traffic light system in Example 2. An ar-
row without a source points to an initial state. Accepting states
are drawn with a double circle.

3.4. Control Protocols

In this article, we are interested in synthesizing a control
protocol for a transition system to ensure that a given LTL
specification is satisfied. We define a control protocol for a
transition system as follows.

Definition 3.6. Let TS = (S,Act,→, I, AP,L) be a
transition system. A control protocol for TS is a function
C : S+ → Act such that C(s0s1 . . . sn) ∈ Act(sn) for all
s0s1 . . . sn ∈ S+.

A control protocol C for a transition system TS essen-
tially restricts the non-deterministic choices in TS by pick-
ing an action based on the path fragment that leads to the
current state of the system, leaving only non-deterministic
choices that arise from the factors over which the system
does not have control. Hence, C induces a transition sys-
tem TSC that formalizes the behavior of TS under control
protocol C. In general, TSC contains all the states in S+

and hence may not be finite even though TS is finite. How-
ever, for special cases where C is a memoryless or a finite
memory control protocol, it can be shown that TSC can be
identified with a finite transition system. Roughly, a mem-
oryless control protocol always picks the action based only
on the current state of TS, regardless of the path fragment
that led to that state. A finite memory control protocol
also maintains its “mode” and picks the action based on
its current mode and the current state of TS.

Example 5. Consider the transition system T1||T2 =
(S,Act,→, I, AP,L) that represents the complete traffic
light system in Example 1 (see Fig. 3). Define a control
protocol C : S+ → Act such that

• C(〈s1,1s2,1〉) = α1,
• C(π〈s1,1s2,2〉〈s1,1s2,1〉) = α1,
• C(π〈s1,2s2,1〉〈s1,1s2,1〉) = α2,
• C(π〈s1,1s2,1〉〈s1,2s2,1〉) = α1 and
• C(π〈s1,1s2,1〉〈s1,1s2,2〉) = α2

for any π ∈ S∗. The transition systems induced by C is
shown in Fig. 6. It can be easily checked that this transi-
tion system satisfies �(¬g1 ∨ ¬g2) and �3g1. However, it
violates �(g1 ∨ g2).

α2
{g2}

α1

{g1}

�
s1,1, s2,1 s1,1, s2,2

s1,2, s2,1 s1,1, s2,1
α1

α2

�
Fig. 6. (T1||T2)C , the transition systems induced by applying
C defined in Example 5 on the traffic light system T1||T2.

4. Control Protocol Synthesis

4.1. Problem Formulation

We consider systems that may be deterministic (e.g., in
the case of closed systems whose behaviors are generated
purely by the system itself without any external influ-
ence) or non-deterministic (e.g., in the case of open sys-
tems whose behaviors can be affected by external influ-
ence). Non-determinism can be used to capture uncertain-
ties in the system, especially those arise from difference
choices of valid environment behavior over which the sys-
tem does not have control. We assume that at any time
instance, the state of the system can be precisely observed.

Depending on the type of the system, its state space
may be discrete, continuous or contains both the discrete
and continuous components. For a purely discrete system,
we assume that it can be modeled as a finite transition sys-
tem. For a purely continuous system, we assume that its

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 7

state evolves based on the continuous-time dynamics

ξ̇(t) = f(ξ(t), d(t), u(t)), ξ(t) ∈ X , d(t) ∈ D, u(t) ∈ U ,
(1)

or the discrete-time dynamics

ξ[k+1] = f(ξ[k], d[k], u[k]), ξ[k] ∈ X , d[k] ∈ D, u[k] ∈ U ,
(2)

where X ⊂ Rn is the continuous state space, D ⊂ Rp
is the set of exogenous disturbances and U ⊂ Rm is the
set of admissible control input. Finally, a hybrid system
framework [24] is used to modeled a system with both
discrete-state and continuous-state components.

Control Protocol Synthesis Problem: Given a contin-
uous, discrete or hybrid model of the dynamics of a system
and a specification expressed as an LTL formula ϕ, auto-
matically synthesize a control protocol for the system to
satisfy ϕ.

We say that the system is correct if the specification
ϕ is satisfied. Note that for a non-deterministic system, its
correctness needs to be interpreted with respect to the non-
deterministic choices over which the system does not have
control. In this case, we require the control protocol to en-
sure that the specification ϕ is satisfied for all the possible
non-deterministic choices (e.g., all the possible behavior of
the environment).

Example 6. Consider the system of traffic lights de-
scribed in Example 1. The system is modeled as T1||T2

whose state space is discrete. Since T1||T2, is action-
deterministic, the system, in this case, is deterministic.

Example 7. Consider the robot motion planning prob-
lem where the robot navigates an area that is partitioned
into cells as shown in Fig. 7. The dynamics of the robot is
abstracted to a finite transition system TS shown on the
right of Fig. 7. The state of TS represents the cell occupied
by the robot. If TS is action-deterministic (i.e., each action,
when applied in each state, uniquely determines the next
state), then the system is deterministic. Otherwise, the sys-
tem is non-deterministic. In this case, non-determinism po-
tentially arises due to disturbances that affect the dynamics
of the robot, leading to multiple possible next states when
some action is applied in some state. The desired prop-
erty of the system is for a robot to visit cell C8, then C1

and then cover C10, C17 and C25 in any order while al-
ways avoiding cells C2, C14 and C18. This property can be
expressed in LTL as 3

(
C8 ∧ 3(C1 ∧ 3C10 ∧ 3C17 ∧

3C25)
)
∧ �¬(C2 ∨ C14 ∨ C18).

Example: Robot Motion Planning

C1 C2 C3 C4 C5

C6

C11

C16

C21 C22 C23 C24 C25

C17 C18 C19 C20

C12 C13 C14 C15

C7 C8 C9 C10

The robot starts from cell C21.

Compute a trajectory for a robot to visit cell C8, then
C1 and then cover C10, C17 and C25 while avoiding
obstacles C2, C14, C18.

Physical constraints:

• The robot can only move to an adjacent cell

C1 C2 C3 C4 C5

C10C9

C14

C19

C24

C8

C13

C18

C23

C7

C12

C17

C22

C6

C11

C16

C21

C15

C20

C25

P

Φ = ♦
�
C8 ∧ ♦(C1 ∧ ♦C10 ∧ ♦C17 ∧ ♦C25)

�
∧

�¬(C2 ∨ C14 ∨ C18)

24

c1 c2 c3 c4 c5

c6 c7 c8 c9 c10

c11 c12 c13 c14 c15

c16 c17 c18 c19 c20

c21 c22 c23 c24 c25

Fig. 7. The robot motion planning problem in Example 7 with
the grid-based world model.

Example 8. Consider the simplified autonomous driv-
ing problem described in Example 3. The system consists
of the autonomous vehicle, obstacles and other vehicles.
If the obstacles and other vehicles are not stationary and
their motion is not known exactly, then the system is non-
deterministic since the system does not have control over
the motion of the obstacles and other vehicles. In this case,
a control protocol for this system needs to ensure that the
desired properties described in Example 3 are satisfied for
all the possible motion (i.e., behavior) of the obstacles and
other vehicles.

4.2. Abstraction-Based Approach

For discrete systems that contain a finite number of states,
existing results from formal methods can be employed to
synthesize a control protocol to ensure that specification ϕ
is satisfied. In the case where the system is deterministic,
the control protocol synthesis problem can be formulated
as a satisfiability problem, commonly known as a model
checking problem [3]. We say that ϕ is satisfiable if the sys-
tem can satisfy ϕ. We further discuss this approach in Sec-
tion 5. In the case where the system is non-deterministic,
the control protocol synthesis problem can be treated as

April 30, 2013 9:38 us12

8 T. Wongpiromsarn, U. Topcu and R. M. Murray

a two-player game between the system and the environ-
ment (i.e., adversary): the environment attempts to falsify
ϕ while the system attempts to satisfy ϕ. Such “reactive
module synthesis” has been considered in [6,7]. We say that
ϕ is realizable if there exists a control protocol that ensures
that ϕ is satisfied no matter what the environment does.
We further discuss this approach in Section 6.

For the case where the system is modeled as a continu-
ous or hybrid system, the number of states is infinite; hence,
discrete control protocol synthesis, including both model-
checking-based and reactive module synthesis, cannot be
directly employed. In this case, a common approach to the
control protocol synthesis problem is to construct a finite
transition system TS = (S,Act,→, I, AP,L) that serves as
an abstract model of the system [8, 25–30]. Discrete con-
trol protocol synthesis as previously mentioned can then
be employed to synthesize a (discrete) control protocol for
this finite transition system to ensure that the specification
is satisfied. This leads to a hierarchical, two-layer design as
shown in Fig. 8 with the following layers:

(a) a discrete planner computes a discrete plan satisfying
ϕ based on the abstract, finite state model and

(b) a continuous controller computes continuous control
signal for the system to implement the discrete plan
based on the physical, infinite state model.

Discrete
Planner

Continuous
Controller

Local
Control

Plant

∆

noise

environment

u

δu

sd

Fig. 8. The hierarchical control implementation of the
abstraction-based approach. Besides the components discussed
in this article, ∆, which captures uncertainties in the plant
model, may be added to make the model more realistic. Ad-
ditionally, a local control may be implemented to account for
the effect of noise, disturbances and unmodeled dynamics. The
inputs and outputs of these two components, not considered in
this paper, are drawn in dashed.

In this hierarchical control design, disturbances that
affect the dynamics of the system may be handled at ei-
ther the discrete planner or the continuous controller level.
The correctness of this abstraction-based approach relies
on the correctness of the abstraction of an infinite-state
system into a finite state model, which has to ensure that
the continuous controller can implement or simulate any
plan generated by the discrete planner. Roughly, this re-
quires that the continuous execution (e.g., the sequence of
states of the physical system) is equivalent to the plan (e.g.,
the sequence of abstract states) generated by the discrete
planner. We refer the reader to [24, 31] for the exact def-

inition of language equivalence and simulation. It can be
shown that the continuous execution is guaranteed to pre-
serve the correctness of the discrete plan, provided that
the abstraction is correct and ϕ is stutter invariant [24].
Specifically, a specification ϕ is stutter invariant if for any
word σ = σn0

0 σn1
1 σn2

2 . . . with σ |= ϕ where n0, n1, n2, . . .
are natural numbers, σm0

0 σm1
1 σm2

2 . . . |= ϕ for any natural
numbers m0,m1,m2, . . . [32].

There are two main abstraction techniques: fixed ab-
straction and sampling-based approaches. Roughly, the
fixed abstraction approaches (Fig. 9) work by partitioning
the continuous state space into a finite number of cells, each
of which serves as a state of TS. To ensure the correctness
of the abstraction, the partition needs to be proposition
preserving, i.e., for any atomic proposition p ∈ AP and
any states ξ1 and ξ2 that belong to the same cell in the
partition, ξ1 satisfies p if and only if ξ2 also satisfies p. In
addition, the transition relation of TS is defined by “reach-
ability” between cells, i.e., s α→ s′ for some α ∈ Act only if
from any point ξ in the cell represented by s, there exists a
continuous control signal that takes the system from point
ξ to a point in the cell represented by s′. If the disturbance
is to be handled by the continuous controller, the control
signal needs to ensure that s′ is reached for any allowable
disturbance.

ξ̇ = f(ξ, d, u)
ξ ∈ X , u ∈ U , d ∈ D

Continuous Controller Layer [CDC’09, AAAI’10]

?

Discrete
Planner

Continuous
Controller

Main idea:

X

ν6 ν7 ν8 ν9 ν10

ν1 ν2 ν3 ν4 ν5

ν1 ν2 ν3 ν4 ν5

ν6 ν7 ν8 ν9 ν10

Theorem: [Under mild assumptions, e.g., preserving the propositions]
For any discrete run satisfying the specification, there exists an admissible
control signal leading to a continuous trajectory satisfying the specification.

Proof: Constructive → Finite-state model + Continuous control signals.

Abstraction refinement for reducing potential conservatism.

Limiting factor: Blow up in the number of states in the finite-state model.

Fig. 9. The fixed abstraction approach where the continuous
state space is partitioned into cells. These cells then serve as
the states of the transition system that represents the abstract
model of the system. This abstract model is then used by the
discrete planner to generate a discrete plan satisfying a given
specification.

Fixed Abstraction: Several fixed abstraction methods
have been proposed for different type of dynamics. For ex-
ample, a continuous-time, time-invariant model was consid-
ered in [29], [26] and [27] for special cases of fully actuated
(ṡ = u), kinematic (ṡ = A(s)u) and piecewise affine dy-
namics, respectively. A discrete-time, time-invariant model
was considered in [8] and [25] for special cases of piece-
wise affine and controllable linear systems, respectively.
Reference [28] deals with more general dynamics by relax-
ing the bisimulation requirement and using the notion of
approximate simulation [33, 34]. Except in special cases,
fixed abstraction approaches typically cannot provide com-
pleteness guarantees, i.e., they typically generate TS that
is an under-approximation of the physical system; hence,
the specification may not be satisfiable or realizable based
on TS even though it is for the physical system.

For completeness, we provide details for the technique
presented in [8]. Consider the case where the state of the

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 9

system evolves based on the discrete-time linear, time-
invariant, state-space model

ξ[t+ 1] = Aξ[t] +Buu[t] +Bdw[t], (3)

where for all t, ξ[t] ∈ X is the state of the system, u[t] ∈ U
is the control input, d[t] ∈ D is the exogenous disturbance
and ξ[0] ∈ X . To simplify the reachability verification, we
consider the restricted case where X ⊆ Rn, U ⊆ Rm and
D are polyhedral sets. Furthermore, we assume that each
atomic proposition p ∈ AP is given as a linear inequality
that essentially defines a halfspace of Rn.

The first step of the abstraction procedure is to
construct a proposition preserving, polytopic partition
{X0, . . . ,XP } of X based on the set AP of atomic propo-
sitions. (Since each p ∈ AP defines a halfspace of X , a
proposition preserving partition {X0, . . . ,XP } of X can be
constructed such that each cell Xi, i ∈ {0, . . . , P} is a poly-
tope.) Define a finite transition system TS = (S,Act,→
, I, AP,L) where S = {X0, . . . ,XP }, Act = {α0, . . . , αP },
I = {XI} such that ξ[0] ∈ XI and L maps each cell Xi to
the set of propositions satisfied by all the states in Xi. The
transition relation → can be defined based on the notion
of finite-time reachability as follows.

Consider arbitrary i, j ∈ {0, . . . , P}. We say that Xj
is finite-time reachable from Xi only if starting from any
ξ[0] ∈ Xi, there exists a finite horizon length N ∈ {0, 1, . . .}
such that for any allowable disturbance, there exists a se-
quence of admissible control inputs u[0], u[1], . . . , u[N−1] ∈
U that take the system to a point in Xj without leaving
Xi ∪ Xj , i.e.,

ξ[N] ∈ Xj , and (4)
ξ[t] ∈ Xi ∪ Xj , for all t ∈ {0, . . . N}. (5)

To verify this reachability relation, we compute the set
Si,j0 of states, starting from which conditions (4) and (5)
can be satisfied under the system dynamics (3) for a pre-
specified horizon length N . If Xi ⊆ Si,j0 , we can conclude
that Xj is finite-time reachable from Xi and add the tran-
sition Xi

αj→ Xj to TS.
Exploiting the assumption that U , D, Xi and Xj are

polyhedral sets and hence can be specified as a set of lin-
ear inequalities, it can be shown [8] that if D is closed and
bounded, then Si,j0 can be obtained by computing the pro-
jection of a certain polytope on Rn. Specifically,

Si,j0 =
{
s ∈ Rn : ∃û ∈ RmN such that L

[
s
û

]
≤M −Gd̂,

∀d̂ ∈ D̄N
}
,

(6)
where the matrices L, M and G can be constructed from
A, Bu, Bd and the description of U , Xi and Xj .

The computation of Si,j0 above not only allows us to
establish the reachability relation, but it also allows us to
refine the partition of X to partially alleviate the conser-
vatism (due to the constraint on the control input as well

as a specific choice of the finite horizon N) of this fixed ab-
straction approach by increasing the number of valid transi-
tions of TS. The underlying idea is to split Xi into Xi∩Si,j0

and Xi \ Si,j0 . This partition refinement procedure can be
repeated until some pre-specified termination criteria such
as the lower bound on the volume of each cell, are met. At
termination, it generates a finite transition system whose
states correspond to the cells in the refined partition of the
continuous state space. This finite transition system serves
as an abstract model of the physical system to be used by
the discrete planner as shown in Fig. 9.

Example 9. As shown in [35], the dynamics of a point-
mass omnidirectional vehicle is given by



ẍ
ÿ

θ̈


+




ẋ
ẏ

2mL2

J θ̇


 =

[
ux
uy
uθ

]
, (7)

with the following constraints on the control efforts:

u2
x(t) + u2

y(t) ≤
(

3− |uθ(t)|
2

)2

and |uθ(t)| ≤ 3. (8)

To decouple the constraints (8), we set |ux(t)| ≤
√

0.5,
|uy(t)| ≤

√
0.5 and |uθ(t)| ≤ 1 for all t. As we will see

later, these conservative bounds allow us to simplify the
reachability problem.

Suppose we are only interested in the translational (x
and y) components of the vehicle state. Discretizing the
dynamics (7) with time step 0.1, we obtain the following
discrete-time linear, time-invariant, state-space model

[
z[t+ 1]
vz[t+ 1]

]
=
[

1 0.0952
0 0.9048

] [
z[t]
vz[t]

]
+
[

0.0048
0.0952

]
uz (9)

where z represents either x or y and vz represents the rate
of change in z. Let Xz be the domain of the vehicle state
projected onto the (z, vz) coordinates. We restrict the do-
main Xz to [zmin, zmax]× [−1, 1] and partition Xz as

Xz =
⋃

i∈{zmin+1,...,zmax}
X−z,i ∪

⋃

i∈{zmin+1,...,zmax}
X+
z,i,

where X−z,i = [i − 1, i] × [−1, 0] and X+
z,i = [i − 1, i] × [0, 1]

as shown in Fig. 10.

vz z

zmin+1 zmin+2 zmax−1 zmaxzmin

0

−1

1

Fig. 10. The proposition preserving partition of the domain Cz

Since the dynamics and the constraints on the con-
trol efforts for the x and y components of the vehicle state
are decoupled, we apply the reachability verification and
partition refinement technique described earlier for the x

April 30, 2013 9:38 us12

10 T. Wongpiromsarn, U. Topcu and R. M. Murray

and y components separately for the sake of computa-
tional efficiency. Furthermore, since the vehicle dynam-
ics (7) are translationally invariant, we can use a similar
partition for all X+

z,i and a similar partition for all X−z,i,
i ∈ {zmin + 1, . . . , zmax}. Exploiting these symmetries al-
low us to simplify the abstraction procedure by considering
only 4 adjacent cells X+

z,i, X−z,i, X+
z,i+1 and X−z,i+1 for some

i ∈ {zmin + 1, . . . , zmax − 1}. Other cells can then be par-
titioned with the reachability relation defined as in these 4
cells.

The partition refinement technique based on the com-
putation of Si,j0 with horizon length N = 10 and the lower
bound Volmin = 0.1 on the volume of each cell generates a
partition of X+

z,i with 5 cells and a partition of X−zi
with 6

cells for each i ∈ {zmin + 1, . . . , zmax} as shown in Fig. 11.

i!1 i!1

0

1

z

v z

Fig. 11. The partition of cells X+
z,i and X−z,i where i ∈ {zmin+

1, . . . , zmax} obtained from the partition refinement technique
with horizon length N = 10.

Sampling-Based Abstraction: A sampling-based
method has been proposed for deterministic systems with
discrete-time, time-invariant dynamics [30]. As opposed
to fixed abstraction approaches where the abstraction is
computed prior to the discrete control protocol synthesis,
which is performed only once, the sampling-based method
progressively samples points in the continuous state space.
Discrete control protocol synthesis then needs to be per-
formed each time a sample point is added. This iterative
procedure is terminated once a discrete plan satisfying a
given specification is found. In order to make this pro-
cedure effective, the discrete control protocol synthesis is
performed in an incremental manner based on the local
model checking algorithm that appears in [36]. In this
case, probabilistic completeness can be ensured, i.e., if
there exists an under-approximation TS of the physical
system for which ϕ is satisfiable, this method finds it with
probability approaching one as the number of samples in-
creases. Applications of the sampling-based approach to
non-deterministic systems, however, have not been consid-
ered.

5. Model-Checking-Based Synthesis

For the case where the system is deterministic, the discrete
control protocol synthesis problem is reduced to finding

a path in TS that satisfies ϕ, which can be formulated
as a non-emptiness of the specification or a satisfiability
problem, also commonly known as a model checking prob-
lem [3]. Such a problem can be solved by claiming that
Trace(TS) ∩Words(ϕ) = ∅. In case of negative result, a
counterexample, which is a word in Trace(TS)∩Words(ϕ),
can be used to obtain a path π of TS that satisfies ϕ. A
positive result means Trace(TS) ∩Words(ϕ) = ∅, i.e., a
path π of TS that satisfies ϕ does not exist; hence, we can
conclude that ϕ is not satisfiable.

For simplicity of the presentation, we assume that TS
only has one valid initial state. (For TS with multiple valid
initial states, the procedure described below can be ap-
plied to each initial state separately.) To check whether
Trace(TS) ∩Words(ϕ) = ∅, existing results from formal
verification can be employed [3]. First, a non-deterministic
Buchi automatonAϕ = (Q,Σ, δ, Q0, F) that accepts all and
only words over AP that satisfy ϕ is computed. The prod-
uct TSp = TS ⊗Aϕ can then be constructed based on the
following definition.

Definition 5.1. Let TS = (S,Act,→, I, AP,L) be a
transition system and Aϕ = (Q,Σ, δ, Q0, F) be a non-
deterministic Buchi automaton. The product of TS and
Aϕ is the transition system TSp = TS ⊗ Aϕ defined by
TSp = (S ×Q,Act,→p, Ip, Q, Lp) where

(i) for any s, t ∈ S, α ∈ Act and p, q ∈ Q, 〈s, p〉 α→p 〈t, q〉
if and only if s α→ t and p

L(t)→ q,

(ii) Ip = {〈s0, q0〉 : s0 ∈ I and ∃q ∈ Q0 such that q
L(s0)→

q0} and
(iii) Lp : S ×Q→ 2Q is given by Lp(〈s, q〉) = {q}.

Consider a path πp = 〈s0, q0〉〈s1, q1〉 . . . on TSp. We
say that πp is accepting if and only if there exist infinitely
many j ≥ 0 such that qj ∈ F . Stepping through Definition
5.1 shows that given a path πp on TSp, the corresponding
path π = s0s1 . . . on TS generates a word L(s0)L(s1) . . .
that satisfies ϕ if and only if πp is accepting. Hence, an
accepting path of TSp uniquely corresponds to a path of
TS that satisfies ϕ. As a result, the model-checking-based
synthesis can be reduced to a graph search problem to find
a state 〈s, q〉 in TSp satisfying the following conditions:

• Lp(〈s, q〉) ∈ F .
• 〈s, q〉 is reachable, i.e., there exists a finite path

fragment πpp from some 〈s0, q0〉 ∈ Ip to 〈s, q〉 in
TSp.

• 〈s, q〉 is on a direct cycle, i.e., there exists a finite
path fragment πcp from some 〈s′, q′〉 ∈ Post(〈s, q〉)
to 〈s, q〉 in TSp.

If such 〈s, q〉 does not exists, we can conclude that ϕ is not
satisfiable. Otherwise, an accepting path πp on TSp can
be simply defined by πp = πpp(πcp)

ω. Let π = s0s1 . . . be
the path on TS corresponding to πp. We define a control

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 11

protocol C for TS by

C(s′0s′1 . . . s′i) =
{
αi if s′0s

′
1 . . . s

′
i = s0s1 . . . si,

α′i otherwise,

where si
αi→ si+1 and α′i ∈ Act(s′i) can be picked arbitrarily.

It can be easily checked that by applying C, the system can
satisfy ϕ by always picking the next state to follow path π.

Various model checkers have been developed for dif-
ferent specification languages. TLC [37] is a model checker
for specifications written in TLA+, which is a specification
language based on Temporal Logic of Actions (TLA) [38].
TLA introduces new kinds of temporal assertions to tradi-
tional linear temporal logic to make it practical to describe
a system by a single formula and to make the specifi-
cations simpler and easier to understand. SPIN, on the
other hand, is a model checker for specifications written in
Process Meta-Language (PROMELA) [39]. Other popular
model checkers include Symbolic Model Verifier (SMV) [40]
and its successor NuSMV [41].

Computational complexity: As mentioned in Section
3.3, the number of states of Aϕ is exponential in the length
of ϕ. Hence, the number of states of the product transi-
tion system TSp is O(|S|)2O|ϕ| where |S| is the number of
states in TS and |ϕ| is the length of ϕ. A nested depth-
first search algorithm [3] can be used to detect accepting
cycles efficiently, with the worst-case time complexity that
is linear in the number of states and transitions of TSp.

Example 10. Consider the traffic light system TS =
T1||T2 shown in Fig. 3 and the desired property ϕ =
�(¬g1 ∨ ¬g2) ∧ �3g1 ∧ �3g2, i.e., we want to make sure
that the two lights are never green at the same time and
each light turns green infinitely often. A non-deterministic
Buchi automaton Aϕ that recognizes ϕ and the product
transition system TSp = TS⊗Aϕ are shown in Fig. 12 and
Fig. 13, respectively. Comparing to Fig. 6, the projection
of the accepting path shown in Fig. 13 onto the state of
TS is exactly the same as the transition system induced by
applying the control protocol described in Example 5.

q0

q1

q2

g1 ∧ ¬g2

¬g1 ∨ ¬g2

¬g1 ∨ ¬g2

¬g1 ∧ g2

g1 ∧ ¬g2

¬g1 ∨ ¬g2

Fig. 12. Non-deterministic Buchi automata Aϕ that recognize
ϕ = �(¬g1 ∨ ¬g2) ∧ �3g1 ∧ �3g2. Accepted states are
drawn with a double circle.

s1,1, s2,1, q0

s1,1, s2,1, q1

s1,2, s2,1, q0

s1,2, s2,1, q1

s1,1, s2,2, q0

s1,1, s2,2, q1

s1,1, s2,2, q2

α1

α1

α2α1

α1

α1

α2

α2

α2

α2

α2

Fig. 13. The product transition system TSp = (T1||T2)⊗Aϕ,
showing only reachable states. An accepting path is highlighted
by double (red) arrows.

6. Reactive Module Synthesis

For the case where the system is non-deterministic, a con-
trol protocol needs to ensure that specification ϕ is satisfied
for all the possible non-deterministic choices (e.g., all the
possible behavior of the environment). As discussed in [6,7],
the control protocol synthesis in this case can be treated as
a two-player game between the system and the environment
(i.e., adversary): the system and the environment alternat-
ingly pick their actions: the environment attempts to falsify
ϕ while the system attempts to satisfy ϕ. A provably cor-
rect control protocol therefore needs to ensure that ϕ is
satisfied for any behavior of the environment and hence is
represented by a satisfying tree where the branching repre-
sents all possible environment (i.e., non-deterministic) ac-
tions as shown in Fig. 14.

x0,y0

x0,y1 x1,y2

x0,y3 x1,y4 x0,y5 x1,y6

x ∈ {x0, x1}x0 x1

x0 x0x1 x1

Fig. 14. A satisfying tree representing a control protocol for
non-deterministic systems. The state of the system is a tuple
(x, y) where x ∈ {x0, x1} represents the non-deterministic choice
of the environment behavior whereas y ∈ {y0, y1, . . .} represents
the state over which the system has control.

Solving the above two-player game typically involves
computing the winning set, which is defined as the set of
initial states, starting from which there exists a strategy for
the system to satisfy the specification for all the possible be-
havior of the environment. A procedure for computing the
winning set also relies on computing the product of transi-
tion systems and finite automata as in the model-checking-

April 30, 2013 9:38 us12

12 T. Wongpiromsarn, U. Topcu and R. M. Murray

based synthesis procedure, except that a non-deterministic
Buchi automaton Aϕ that recognizes ϕ needs to be “de-
terminized” into a deterministic Rabin automaton Rϕ [3].
The product TSp = TS⊗Rϕ, defined similar to Definition
5.1, is then computed. Finally, a fixed-point strategy can be
applied on TSp to isolate the winning set. A control proto-
col can then be constructed by saving intermediate values
in the winning set computation. The running time of this
synthesis algorithm as well as the size of TSp are both at
most double exponential in the length of ϕ. (The first ex-
ponent results from the construction of non-deterministic
Buchi automaton Aϕ from ϕ whereas the second exponent
results from the determinization of Aϕ into a deterministic
Rabin automaton Rϕ.) We refer the reader to [6, 42] for
more details.

It has been shown that for certain classes of specifica-
tions, such as those of the form �p, 3p, �3p and 3�p
where p is a proposition, the synthesis problem can be
solved with lower complexity [43, 44]. The main idea is to
avoid the translation of the formula to a non-deterministic
Buchi automaton and the determinization of the non-
deterministic Buchi automaton into a deterministic Ra-
bin automaton. For example, for the reachability game
where the specification is of the form ϕ = 3p, we define
W = {s ∈ S : s |= p} to be the set of states satisfying
p and the predecessor operator Pre∃∀ : 2S → 2S where
Pre∃∀(R) is the set of states whose all successors have at
least one successor in R, i.e., Pre∃∀(R) = {s ∈ S : ∀s′ ∈
S if s → s′, then ∃s′′ ∈ R such that s′ → s′′}. The set of
all the states starting from which the controller can force
the system into W can be computed efficiently by the iter-
ation sequence

R0 = W,

Ri = Ri−1 ∪ Pre∃∀(Ri−1),∀i > 0.

From Tarski-Knaster Theorem, it can be shown that there
exists a natural number n such that Rn = Rn−1. In addi-
tion, such Rn is the minimal solution of the fix-point equa-
tion R = W ∪ Pre∃∀(R).

The methodology presented in [7], which is summa-
rized below, allows us to solve a more general game effi-
ciently through the use of binary decision diagrams. First,
a game structure is defined as a tuple G = (V,X, Y, θe, θs,
ρe, ρs, AP, L, ϕ) where

• V is a finite set of variables over finite domains,
• X ⊆ V is a set of environment variables,
• Y = V \X is a set of controlled variables,
• θe(X) is a proposition over X characterizing the

initial states of the environment,
• θs(V) is a proposition over V characterizing the

initial states of the system,
• ρe(V,X ′) is a proposition relating a state s ∈

dom(V) to a possible next input value sX ∈
dom(X) and characterizes the transition relation
of the environment,
• ρs(V,X ′, Y ′) is a proposition relating a state s ∈

dom(V) and an input value sX ∈ dom(X) to an

output value sY ∈ dom(Y) and characterizes the
transition relation of the system,

• AP is a set of atomic propositions,
• L : dom(V)→ 2AP is a labeling function and
• ϕ is the winning condition, given by an LTL for-

mula.

We let dom(V), dom(X) and dom(Y) denote the set of all
the possible assignments to variables in V ,X and Y , respec-
tively. An environment state sX ∈ dom(X) is a valid input
in state s ∈ dom(V) if (s, sX) |= ρe whereas a controlled
state sY ∈ dom(Y) is a valid output in state s ∈ dom(V)
reading input sX if (s, sX , sY) |= ρs.

Example 11. For an autonomous driving problem, a
game structure G = (V,X, Y, θe, θs, ρe, ρs, AP, L, ϕ) may
be defined such that

• the variables inX capture the position of obstacles,
other cars, pedestrians, etc.,

• the variables in Y capture the maneuver state of
the vehicle, e.g., drive or stop, or whether passing
or reversing is allowed, etc.,

• θe describes the valid initial states of the environ-
ment, e.g., where obstacles can be,

• θs describes the valid initial states of the vehicle,
e.g., the stop state,

• ρe describes how obstacles may move,
• ρs describes the valid transitions of the maneuver

states of the vehicle and
• ϕ describes the winning condition, e.g., vehicle

does not get stuck.

A game is played as follows. Initially, the environment
chooses an assignment sX ∈ dom(X) such that sX |= θe
and the system chooses an assignment sY ∈ dom(Y) such
that (sX , sY) |= θe ∧ θs. From a state s, the environment
chooses an input sX ∈ dom(X) such that (s, sX) |= ρe
and the system chooses an output sY ∈ dom(Y) such that
(s, sX , sY) |= ρs. Formally, we define a play as a maximal
sequence of states σ = s0s1 . . . such that s0 |= θe ∧ θs and
for each j ≥ 0, (sj , sj+1) |= ρe ∧ ρs.

A finite memory control protocol for the system can
be identified with a partial function f : M × dom(V) ×
dom(X)→M×dom(Y), where M is some memory domain
with a designated initial value m0 ∈M , such that for every
s ∈ dom(V), sX ∈ dom(X) and m ∈M , if (s, sX) |= ρe and
f(m, s, sX) = (m′, sY), then (s, sX , sY) |= ρs. Protocol f
is winning for the system starting from state s0 if any play
σ = s0s1 . . . with f(mi, si, si+1|X) = (mi+1, si+1|Y),∀i ≥ 0
either (i) is infinite and satisfies ϕ, or (ii) is finite and there
is no assignment sX ∈ dom(X) such that (sn, sX) |= ρe
where sn is the last state in σ. We let Wins denote a propo-
sition characterizing the set of states starting from which
there exists a winning strategy for the system. A game
structure is winning for the system if for each sX ∈ dom(X)
such that sX |= θe, there exists sY ∈ dom(Y) such that
(sX , sY) |= θs and (sX , sY) ∈Wins.

For certain LTL specifications, µ-calculus over game

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 13

structures can be employed to characterize the set of win-
ning states of the system. The description of µ-calculus,
however, is beyond the scope of this paper and we refer
the reader to [7, 45]. As an example, µ-calculus formula
µR(p ∨ R) characterizes the set of states from which
system can force the game to eventually visit p-states;
hence, provides the solution for the reachability game pre-
viously discussed. Here, µ is the least fixpoint operator in
µ-calculus, R is known as a “relational variable” and the
operator is defined roughly similar to the predecessor
operator Pre∃∀.

Reference [7] considers a wider class of LTL formula
known as Generalized Reactivity[1] (GR[1]), which covers
LTL formulas of the form

ϕ = (�3p1 ∧ . . . ∧ �3pm) =⇒ (�3q1 ∧ . . . ∧ �3qn).
(10)

Roughly, the left hand side of =⇒ specifies the assump-
tion on the environment behavior whereas the right hand
side of =⇒ specifies the desired property of the system. [7]
shows that there exists a µ-calculus formula that charac-
terizes the set of winning states of the system for GR[1]
winning condition, allowing the synthesis problem to be
solved based on fixpoint computation in time proportional
to nm|dom(V)|3 where |dom(V)| is the size of the state
space. The proposed synthesis procedure has been imple-
mented in JTLV [7]. We refer the reader to [7] for more
details, including the discussion on the expressiveness of
GR[1] and an extension to handle formulas of the form
ϕe =⇒ ϕs where ϕe and ϕs are any LTL formulas that can
be represented by a deterministic Buchi automaton, which
is defined as non-deterministic Buchi automaton (see Def-
inition 3.5) with additional constraints that |Q0| ≤ 1 and
for any q ∈ Q and σ ∈ Σ, (q, σ, q′) ∈ δ and (q, σ, q′′) ∈ δ
imply that q′ = q′′. LTL formulas that can be represented
by a deterministic Buchi automaton include those of the
form �(p1 =⇒ 3p2) where p1 and p2 are propositions.

7. Receding Horizon Temporal Logic
Planning

The main limitation of the discrete synthesis described in
Section 5 and Section 6 is the state explosion problem. In
the worst case, all the possible states of the system have to
be taken into account. For example, if the system has |V |
variables, each can take any of the P possible values, then
the state space may contain as many as P |V | states.

To partially alleviate the state explosion problem, in
[8, 11], we consider reactive module synthesis with GR[1]
specifications and show that for systems with a certain
structure, the synthesis problem can be solved in a receding
horizon fashion, i.e., compute the plan or strategy over a
“shorter” horizon, starting from the current state, imple-
ment the initial portion of the plan, move the horizon one
step ahead and recompute. This approach essentially re-
duces the discrete control protocol synthesis problem into
a set of smaller problems. The size of these smaller prob-
lems depends on the horizon length. For example, consider

the autonomous driving problem where an autonomous ve-
hicle needs to navigate the road shown in Fig. 15, starting
from cell C1,1 with the destination C1,L∪C2,L∪C3,L. Sup-
pose the horizon length is l (i.e., the vehicle plans for l
cells ahead). Then, the state space for each short-horizon
problem contains at most 3l23l states (whereas the size of
the original problem is 3L23L). Hence, the horizon length
should be made as small as possible, subject to the realiz-
ability of the resulting short-horizon specifications as too
short horizon typically renders the specifications unrealiz-
able.

C1,1 C1,2 C1,L

C2,LC2,1 C2,2

C3,1 C3,2 C3,L

Fig. 15. The autonomous driving example where the road is
partitioned into 3L cells where L is the length of the road.

Sufficient conditions that ensure that this receding
horizon implementation preserves the desired system-level
properties are presented in [8,11]. For the simplicity of the
presentation, in this article, we consider the case where the
specification is given by

ϕ = (ϕinit ∧ ϕenv) =⇒ (ϕsafety ∧ ϕgoal), (11)

where ϕinit is a proposition characterizing the set of initial
states, ϕenv is an LTL formula characterizing the assump-
tion on the environment behavior and can be written as the
conjunction of a safety formula and the progress formulas
on the left hand side of =⇒ in (10), ϕsafety is a safety
formula and ϕgoal is of the form ϕgoal = �3q where q is
a proposition characterizing the set of “goal” states to be
visited infinitely often.

The receding horizon approach works as follows. First,
we organize the discrete state space into a partially or-
dered set ({W0, . . . ,WM},≺ϕ) such that W0 only con-
tains the goal states and W0 ≺ϕ Wi for all i 6= 0. A
map F : {W0, . . . ,WM} → {W0, . . . ,WM}, which cap-
tures the horizon length, then needs to be defined such that
F(Wi) ≺ϕ Wi for all i 6= 0. Finally, we specify a propo-
sition Φ that characterizes the receding horizon invariant
such that any state that satisfies ϕinit also satisfies Φ (i.e.,
ϕinit =⇒ Φ is a tautology). We then define a short-horizon
specification Ψi associated with eachWi, i ∈ {0, . . . ,M} as

Ψi =
(
(ν ∈ Wi) ∧ Φ ∧ ϕenv

)
=⇒

(
�Φ ∧ ϕsafety ∧ 3(ν ∈ F(Wi))

)

(12)
where ν is the state of the system. This short-horizon spec-
ification essentially states that (a) the initial state is as-
sumed to be in Wi and satisfies Φ, (b) the environment is
assumed to satisfy the assumptions stated in the original
specification and (c) the original safety properties are satis-
fied, Φ holds throughout an execution and the system even-
tually reaches a state in F(Wi). Hence, F(Wi) essentially
defines an intermediate goal for states inWi. In addition, Φ

April 30, 2013 9:38 us12

14 T. Wongpiromsarn, U. Topcu and R. M. Murray

is introduced to ensure that a provably correct plan exists
when the system reaches the end of the current horizon and
needs to compute a new plan. We refer the reader to [8] for
a detailed discussion on this receding horizon framework,
including an extension to the case where there are multiple
goals that may be visited in an arbitrary order.

Consider a simple example shown in Fig. 16 where
ν10 is the goal state. The partial order may be defined as
W0 ≺ϕ W1 ≺ϕ . . . ≺ϕ W4 and the map F may be defined
as F(Wj) = Wj−2, for all j ≥ 2 and F(W1) = F(W0) =
W0. The key idea of the receding horizon framework is to
synthesize a control protocol for short-horizon specification
Ψ4, which corresponds to going from ν1 only to a state in
F(W4) = W2, rather than synthesizing a control protocol
for going from the initial state ν1 to the goal state ν10 in
one shot, taking into account all the possible behavior of the
environment. Once a state in W3, i.e., ν5 or ν6 is reached,
we then recompute a protocol for the short-horizon speci-
fication Ψ3 for going to a state in F(W3) =W1. This pro-
cess is then continually repeated. From the finiteness of the
set {W0, . . . ,WM} and its partial order, it can be shown
that this receding horizon implementation of the short-
horizon strategies ensures the correctness of the global spec-
ification, provided that all the short horizon specifications
Ψi, i ∈ {0, . . .M} are realizable [8]. In this case, the invari-
ant Φ is introduced to rule out the states that render the
short horizon problems unrealizable.

ν1

ν2

ν3

ν4

ν5 ν6 ν7

ν8

ν9

ν10

W0

W1

W2W3

W4

Fig. 16. A graphical description of the receding horizon frame-
work for a special case where there is only one goal ν10.
ν1, . . . , ν10 are the discrete states.

Given a receding horizon invariant Φ, the partial order
≺ϕ as well as the horizon length defined by the map F can
be automated by adding an additional component, namely
the “goal generator” to the hierarchical control structure in
Fig. 8. The goal generator works on a graph G withWi, i ∈
{0, . . .M} being its states. For each i, j ∈ {0, . . .M}, a tran-
sition from Wi to Wj in G is added if i 6= j and the short
horizon specification Ψi is realizable with F(Wi) = Wj .
After G is constructed, the goal generator then performs a
graph search to find a path from Wi to which the current
state of the system belongs to a goal state inW0. This path
essentially defines a sequence of intermediate goals, each
for each short horizon problem. The resulting hierarchical
control structure with this implementation of the receding
horizon framework is shown in Fig. 17. Fig. 18 shows the
similarity of this hierarchical control structure with that
implemented on Alice, illustrating that the techniques pre-
sented in this article can be utilized to formalize and enable
automatic design of the navigation protocol stack of an au-
tonomous system.

Goal
Generator

Discrete
Planner

Continuous
Controller

Local
Control

Plant

∆

noise

environment

environment

u

δu

sd

Fig. 17. The hierarchical control structure with the goal gen-
erator.

Hierarchical control
architecture

Putting the pieces together

Different views

“short-horizon
specification”

“long-horizon
specification”

continuous
dynamics&
constraints

W0 ≺ . . . ≺ WL−1 ≺ WL

W0WL WL−1

Multi-scale modelsAlice’s control
component

Mission
Planner

Traffic
Planner

Path
Planner

Path
Follower

Discrete
Planner

Continuous
Controller

Goal
Generator

Gcdrive

Vehicle

Plant

ξ̇ = f(ξ, d, u)
ξ ∈ X , u ∈ U , d ∈ D

Fig. 18. The hierarchical control structure with the receding
horizon implementation, showing the similarity with the navi-
gation protocol stack implemented on Alice. The goal generator
has similar functionality as Mission Planner. It determines a se-
quence of intermediate goals for the discrete planner such that
the original “long-horizon” specification is satisfied. Its compu-
tation relies on the graph G that encodes the partially ordered
set ({W0, . . . ,WM},≺ϕ). The discrete planner has similar func-
tionality as the composition of Traffic Planner and Path Plan-
ner. It computes a discrete plan for the system such that the
short-horizon specification in (12) with the next intermediate
goal computed by the goal generator is satisfied based on a finite,
abstract model of the physical system. Finally, the continuous
controller deals with the continuous dynamics and constraints
to ensure that the physical system follows the plan computed
by the discrete planner. This functionality is similar to that of
Path Follower in Alice.

Computational Complexity and Completeness: The
receding horizon implementation reduces the computa-
tional complexity by restricting the state space considered
in each subproblem. However, it is not complete. Even if
the original specification is realizable, there may not exist
a combination of horizon length, partial order relation and
receding horizon invariant that render all the short horizon
specification realizable. Nevertheless, its successful applica-

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 15

tions to autonomous driving problems have been illustrated
in [8–11]. Examples of these applications are provided in
Figure 20.

Remark 7.1. Computation of the horizon length, partial
order relation and receding horizon invariant requires in-
sights for each problem domain. Automatic construction of
these elements is subject to current research. Reference [8]
describes automatic construction of certain elements, given
other elements, e.g., automatic computation of the horizon
length and partial order relation, given a receding hori-
zon invariant, and automatic computation of the receding
horizon invariant, given a horizon length and partial order
relation.

R1 R2

R4R3
R6

R5

I1

I2

I3
+

-

+

-

+

-

+

-

+
-

W1
0

Wi
j

W2
0Wi

j−1Wi
j+1

Fig. 19. The road network and its partition for the autonomous
vehicle example. The stars indicate the cells that need to be vis-
ited infinitely often.

Example 12. Consider an autonomous driving problem
in an urban-like environment. We consider the road net-
work shown in Fig. 19, which is partitioned into N = 282
cells. Each of these cells may or may not be occupied by an
obstacle. The desired properties include:

• Each of the two cells marked by star needs to be
visited infinitely often.
• No collision is allowed, i.e., the vehicle cannot oc-

cupy the same cell as an obstacle
• The vehicle stays in the right lane unless there is

an obstacle blocking the lane.
• The vehicle can only proceed through an intersec-

tion when the intersection is clear.

In [8], we show that with some mild assumptions on the
environment behavior, there exists a receding horizon in-
variant that ensures that all the short-horizon specifications
are realizable with horizon length 2, i.e, F(Wi) = F(Wi−2).
Hence, the size of the state space for each short-horizon

problem is at most 4608 whereas the size of the state space
of the original problem is in the order of 1087. Roughly,
the receding horizon invariant requires that the vehicle is
not surrounded by obstacles and if the vehicle is not in the
travel lane, there must be an obstacle blocking the lane.
Using JTLV, each short horizon synthesis problem can be
solved in approximately 1.5 seconds on a MacBook with a
2 GHz Intel Core 2 Duo processor and 4 Gb of memory.
Simulation results when the receding horizon approach is
applied are shown in Fig. 20.

Fig. 20. Simulation results with (top) no road blockage, (bot-
tom) a road blockage on the middle road. The corresponding
movies can be downloaded from
http://sourceforge.net/projects/tulip-control/.

8. TuLiP: A Software Toolbox for Receding
Horizon Temporal Logic Planning

TuLiP [12] is a Python-based toolbox for control proto-
col synthesis with LTL specifications. It takes, as an input,
the model and the specification of the system. Currently,
TuLiP only handles GR[1] specifications and systems mod-
eled either by a finite transition system or by a discrete-time
piecewise affine dynamics.

The key features of TuLiP include control protocol syn-
thesis and receding horizon planning. The synthesis feature,
as summarized in Fig. 21, relies on generating a proposition
preserving partition of the continuous state space, partition
refinement based on finite-time reachability analysis and re-
active module synthesis. JTLV [7] is used as the underlying
discrete control protocol synthesis routine.

In the receding horizon planning implementation,
TuLiP automatically constructs the short horizon specifi-
cation Ψi in (12) for each i ∈ {0, . . . ,M}, given a partition
of the discrete state space {W0, . . . ,WM}, a map F and
a receding horizon invariant Φ. It also includes functions
for verifying that there exists a partial order ≺ϕ and that

April 30, 2013 9:38 us12

16 T. Wongpiromsarn, U. Topcu and R. M. Murray

the sufficient condition for the correctness of the receding
horizon implementation is satisfied, and computing the re-
ceding horizon invariant Φ if one exists or reporting an error
otherwise.

System	

Model	

Con.nuous	

State	
 Space	

Par..on	

Par..on	

Refinement	

Proposi.on	

Preserving	

Par..on	

Finite	

Transi.on	

System	

System	

Spec	

Reac.ve	

Module	

Synthesis	

Discrete	

Planner	

Con.nuous	

Controller	

Input	
 Output	

TuLiP	

Fig. 21. The control protocol synthesis procedure implemented
in TuLiP.

Successful applications of TuLiP include autonomous
driving [9,11], vehicle management systems in avionics [46],
multi-target tracking [47] and robotic manipulation [48].
Other simpler examples are included in the current release
of the toolbox.

9. Concluding Remarks and Open Problems

In this article, we summarized existing results from formal
methods and hybrid systems that enable automatic synthe-
sis of control protocols with correctness guarantee for finite
transition systems, dynamical systems and hybrid systems.
Non-determinism was used to capture uncertainties in the
system, especially those arising from different choices of
valid environment behavior over which the system does not
have any control. Correctness of the system was character-
ized by temporal logic formulas that express the desired
properties of the system as well as the assumptions on the
unknowns or environment.

While several application domains have demonstrated
the promising potential of these control protocol synthesis
techniques, a number of problems remain open. We here
focus on scalability, optimality and robustness.

Computation complexity: Even though the discrete
synthesis described in this article can be performed in
polynomial time for a certain class of properties, for prac-
tical problems the rapid increase in computational com-
plexity with the size of the state space is one of the lim-
iting factors that restricts the application of correct-by-
construction synthesis. The receding horizon framework ad-
dresses this challenge by decomposing the global reactive
synthesis problem into smaller, “short-horizon” synthesis
problems. The decomposition is driven by a partial order
structure, induced by the mission specifications, embedded
in the discrete state space. Another possibility for decom-
position is the underlying networked system structure. In
that case, it may be possible to compositionally design dis-

tributed controllers for each part of the system in such a
way that the controllers, when implemented together, work
correctly for the overall system [47,49]. Synthesis can then
be performed separately for each individual subsystem pro-
vided that appropriate information exchange and interface
models can be found such that each local specification is
realizable. Closely related to [47, 49] is the work reported
in [50–52].

Another recent approach, namely “incremental synthe-
sis,” enables the synthesis to be performed in an anytime-
fashion, taking into account only a small number of subsys-
tems initially and successively adding more subsystems to
the synthesis procedure until the computational resource
constraints are exceeded [53, 54]. This approach allows a
suboptimal solution to be obtained in the case where the
full problem cannot be solved due to the state explosion
problem.

Optimality: In many applications, not only the correct-
ness but the optimality of the system is also critical.
The synthesis of optimal correct control protocols have
been considered for deterministic and probabilistic sys-
tems [55–58]. [59] considers mean-payoff parity games on
graphs. Such games incorporate both quantitative and
qualitative objectives where the qualitative component is a
parity condition and the quantitative component is a mean-
payoff reward. Dealing with optimality in non-deterministic
systems with more general classes of quantitative and qual-
itative objectives, however, remains an open problem.

Accounting for uncertainties: In this article, uncertain-
ties are captured as non-determinism in the system and
reactive module synthesis is employed to generate a cor-
rect control protocol. On the other hand, these methods do
not provide any quantitative information of the robustness
of the synthesized system against uncertainties. For exam-
ple, in the case where the specification is not realizable,
one may want to know the probability of failure. To pro-
vide such quantitative information, probabilistic systems
are considered in [60] where the system is modeled as a
Markov decision process and the objective of the synthe-
sis is to generate a control protocol that maximizes the
probability that the system satisfies a given specification.
However, open issues remain, for example, regarding how
to generate a good probabilistic model of the system. An
initial attempt toward handling modeling uncertainties is
in [61] where strategies for Markov decision processes with
uncertain transition probabilities are synthesized from tem-
poral logic specifications.

An important yet implicit assumption in reactive syn-
thesis is that the sensing and perception information is
complete and perfect. Some initial attempts to deal with
partially observable systems is in [62–64].

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 17

References

[1] M. Buehler, K. Iagnemma and S. Singh, The DARPA
Urban Challenge: Autonomous Vehicles in City Traffic
(Springer Verlag, 2010).

[2] J. Markoff, Google cars drive themselves, in traffic The
New York Times, (October 9, 2010).

[3] C. Baier and J.-P. Katoen, Principles of Model Check-
ing (Representation and Mind Series) (The MIT
Press, 2008).

[4] E. A. Emerson, Temporal and modal logic, Hand-
book of Theoretical Computer Science (Vol. B): For-
mal Models and Semantics (1990) 995–1072.

[5] Z. Manna and A. Pnueli, The temporal logic of reactive
and concurrent systems (Springer-Verlag, 1992).

[6] A. Pnueli and R. Rosner, On the synthesis of a reac-
tive module, Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, (ACM, 1989), pp. 179–190.

[7] N. Piterman, A. Pnueli and Y. Sa’ar, Synthesis of Re-
active(1) Designs, Verification, Model Checking, and
Abstract Interpretation, Lecture Notes in Computer
Science, Vol. 3855 (Springer Berlin Heidelberg, 2005),
ch. 24, pp. 364–380. Software available at http://
jtlv.sourceforge.net/.

[8] T. Wongpiromsarn, U. Topcu and R. M. Murray, Re-
ceding horizon temporal logic planning, IEEE Trans-
actions on Automatic Control 57(11) (2012) 2817–
2830.

[9] T. Wongpiromsarn, U. Topcu and R. M. Murray, Re-
ceding horizon temporal logic planning for dynamical
systems, Proc. of IEEE Conference on Decision and
Control , (2009).

[10] T. Wongpiromsarn, U. Topcu and R. M. Murray, Au-
tomatic synthesis of robust embedded control soft-
ware, AAAI Spring Symposium on Embedded Rea-
soning: Intelligence in Embedded Systems, (2010), pp.
104–111.

[11] T. Wongpiromsarn, U. Topcu and R. M. Murray, Re-
ceding horizon control for temporal logic specifica-
tions, Proc. of the 13th International Conference on
Hybrid Systems: Computation and Control , (2010).

[12] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu and
R. M. Murray, TuLiP: A software toolbox for receding
horizon temporal logic planning, International Con-
ference on Hybrid Systems: Computation and Con-
trol , (2011). software available at http://www.cds.
caltech.edu/tulip.

[13] J. W. Burdick, N. DuToit, A. Howard, C. Looman,
J. Ma, R. M. Murray and T. Wongpiromsarn, Sensing,
navigation and reasoning technologies for the DARPA
Urban Challenge, tech. rep., DARPA Urban Challenge
Final Report (2007).

[14] N. E. DuToit, T. Wongpiromsarn, J. W. Burdick and
R. M. Murray, Situational reasoning for road driving
in an urban environment, International Workshop on
Intelligent Vehicle Control Systems, (2008).

[15] T. Wongpiromsarn and R. M. Murray, Distributed

mission and contingency management for the DARPA
Urban Challenge, International Workshop on Intelli-
gent Vehicle Control Systems, (2008).

[16] T. Wongpiromsarn, S. Mitra, R. M. Murray and
A. Lamperski, Verification of periodically controlled
hybrid systems: Application to an autonomous vehicle,
ACM Transactions in Embedded Computing Systems,
Special Issue on the Verification of Cyber-Physical
Software Systems 11 (2012).

[17] A. Pnueli, The temporal logic of programs, Proc. of the
18th Annual Symposium on the Foundations of Com-
puter Science, (IEEE, 1977), pp. 46–57.

[18] A. Pnueli, Applications of temporal logic to the spec-
ification and verification of reactive systems: a sur-
vey of current trends, Current Trends in Concurrency.
Overviews and Tutorials (1986) 510–584.

[19] A. Galton (ed.), Temporal Logics and Their Applica-
tions (Academic Press Professional, Inc., San Diego,
CA, 1987).

[20] F. Lin, Analysis and synthesis of discrete event sys-
tems using temporal logic, Control Theory and Ad-
vanced Technologies 9(1) (1993) 341–350.

[21] S. Jiang and R. Kumar, Failure diagnosis of discrete
event systems with linear-time temporal logic fault
specifications, IEEE Transactions on Automatic Con-
trol 49(6) (2004) 934–945.

[22] R. Koymans, Specifying real-time properties with met-
ric temporal logic, Real-Time Syst. 2(4) (1990) 255–
299.

[23] P. Gastin and D. Oddoux, Fast LTL to Büchi au-
tomata translation, Proceedings of the 13th Interna-
tional Conference on Computer Aided Verification,
eds. G. Berry, H. Comon and A. Finkel Lecture Notes
in Computer Science 2102, (Springer, Paris, France,
2001), pp. 53–65. Software available at http://www.
lsv.ens-cachan.fr/~gastin/ltl2ba/.

[24] R. Alur, T. A. Henzinger, G. Lafferriere and G. J.
Pappas, Discrete abstractions of hybrid systems, Pro-
ceedings of the IEEE 88(7) (2000) 971–984.

[25] P. Tabuada and G. J. Pappas, Linear time logic control
of discrete-time linear systems, IEEE Transactions on
Automatic Control 51(12) (2006) 1862–1877.

[26] D. Conner, H. Kress-Gazit, H. Choset, A. Rizzi and
G. Pappas, Valet parking without a valet, IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2007 , (2007), pp. 572–577.

[27] M. Kloetzer and C. Belta, A fully automated frame-
work for control of linear systems from temporal logic
specifications, IEEE Transactions on Automatic Con-
trol 53(1) (2008) 287–297.

[28] A. Girard and G. J. Pappas, Hierarchical control sys-
tem design using approximate simulation, Automatica
45(2) (2009) 566–571.

[29] H. Kress-Gazit, G. E. Fainekos and G. J. Pap-
pas, Temporal-logic-based reactive mission and mo-
tion planning, IEEE Transactions on Robotics 25(6)
(2009) 1370–1381.

[30] S. Karaman and E. Frazzoli, Sampling-based motion

April 30, 2013 9:38 us12

18 T. Wongpiromsarn, U. Topcu and R. M. Murray

planning with deterministic µ-calculus specifications,
Proc. of IEEE Conference on Decision and Control ,
(2009), pp. 2222–2229.

[31] H. Tanner and G. J. Pappas, Simulation relations for
discrete-time linear systems, Proc. of the IFAC World
Congress on Automatic Control , (2002), pp. 1302–
1307.

[32] D. Peled and T. Wilke, Stutter-invariant temporal
properties are expressible without the next-time op-
erator, Information Processing Letters 63(5) (1997)
243–246.

[33] A. Girard, A. A. Julius and G. J. Pappas, Approxi-
mate simulation relations for hybrid systems, Discrete
Event Dynamic Systems 18(2) (2008) 163–179.

[34] J. Liu, N. O. Ufuk Topcud and R. M. Murray, Syn-
thesis of reactive control protocols for differentially flat
systems, Proc. of IEEE Conference on Decision and
Control , (2012).

[35] T. Kalmr-Nagy, R. D’Andrea and P. Ganguly, Near-
optimal dynamic trajectory generation and control of
an omnidirectional vehicle, Robotics and Autonomous
Systems 46(1) (2004) 47 – 64.

[36] K. Schneider, Verification of Reactive Systems
(Springer, 2004).

[37] Y. Yu, P. Manolios and L. Lamport, Model check-
ing TLA+ specifications, Conference on Correct Hard-
ware Design and Verification Methods, (1999), pp. 54–
66.

[38] L. Lamport, The temporal logic of actions, ACM
Transactions on Programming Languages and Systems
16 (May 1994) 872–923.

[39] G. J. Holzmann, The Spin Model Checker (Addison-
Wesley, 2004).

[40] K. L. McMillan, Symbolic Model Checking (Kluwer
Academic Publishers, 1993).

[41] A. Cimatti, E. M. Clarke,
E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani and A. Tacchella, Nusmv 2: An open-
source tool for symbolic model checking, CAV , eds.
E. Brinksma and K. G. Larsen Lecture Notes in Com-
puter Science 2404, (Springer, 2002), pp. 359–364.

[42] M. Kloetzer and C. Belta, Dealing with nondeter-
minism in symbolic control, Proceedings of the 11th
international workshop on Hybrid Systems: Compu-
tation and Control , (Springer-Verlag, Berlin, Heidel-
berg, 2008), pp. 287–300.

[43] E. Asarin, O. Maler, A. Pnueli and J. Sifakis, Con-
troller synthesis for timed automata, IFAC Symposium
on System Structure and Control , (Elsevier, 1998), pp.
469–474.

[44] R. Alur and S. La Torre, Deterministic generators and
games for LTL fragments, ACM Transactions on Com-
putational Logic 5(1) (2004) 1–25.

[45] D. Kozen, Results on the propositional µ-calculus,
Theoretical Computer Science 27(3) (1983) p. 333354.

[46] T. Wongpiromsarn, U. Topcu and R. M. Murray,
Formal synthesis of embedded control software: Ap-
plication to vehicle management systems, AIAA In-

fotech@Aerospace, (2011).
[47] N. Ozay, U. Topcu, T. Wongpiromsarn and R. M.

Murray, Distributed synthesis of control protocols for
smart camera networks,, International Conference on
Cyber-Physical Systems, (2011).

[48] S. Chinchali, S. C. Livingston, U. Topcu, J. W. Bur-
dick and R. M. Murray, Towards formal synthesis of
reactive controllers for dexterous robotic manipula-
tion, IEEE International Conference on Robotics and
Automation (ICRA), (2012), pp. 5183–5189.

[49] N. Ozay, U. Topcu and R. M. Murray, Distributed
power allocation for vehicle management systems,,
Proc. of IEEE Conference on Decision and Control ,
(2012).

[50] D. Peled and S. Schewe, Practical distributed con-
trol synthesis, INFINITY , eds. F. Yu and C. Wang
EPTCS 73 (2011), pp. 2–17.

[51] G. Katz, D. Peled and S. Schewe, Synthesis of dis-
tributed control through knowledge accumulation,
CAV , eds. G. Gopalakrishnan and S. Qadeer Lecture
Notes in Computer Science 6806, (Springer, 2011),
pp. 510–525.

[52] B. Finkbeiner and S. Schewe, Coordination logic, CSL,
eds. A. Dawar and H. Veith Lecture Notes in Computer
Science 6247, (Springer, 2010), pp. 305–319.

[53] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli
and D. Rus, Incremental temporal logic synthesis of
control policies for robots interacting with dynamic
agents, Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, (2012).

[54] A. Ulusoy, T. Wongpiromsarn and C. Belta, Incre-
mental control synthesis in probabilistic environments
with temporal logic constraints, Proc. of IEEE Con-
ference on Decision and Control , (2012).

[55] A. Ulusoy, S. L. Smith, X. C. Ding and C. Belta, Ro-
bust multi-robot optimal path planning with temporal
logic constraints, IEEE International Conference on
Robotics and Automation (ICRA), (2012), pp. 4693–
4698.

[56] S. L. Smith, J. Tumova, C. Belta and D. Rus, Op-
timal path planning for surveillance with temporal-
logic constraints, International Journal of Robotics
Research 30(14) (2011) 1695–1708.

[57] X. C. Ding, S. L. Smith, C. Belta and D. Rus, Mdp op-
timal control under temporal logic constraints, Proc.
of IEEE Conference on Decision and Control , (2011),
pp. 532–538.

[58] E. M. Wolff, U. Topcu and R. M. Murray, Optimal
control with weighted average costs and temporal logic
specifications, Proc. of Robotics: Science and Systems,
(2012).

[59] K. Chatterjee, T. Henzinger and M. Jurdzinski, Mean-
payoff parity games, LICS 05 , (June 2005).

[60] X. C. Ding, S. L. Smith, C. Belta and D. Rus, LTL con-
trol in uncertain environments with probabilistic sat-
isfaction guarantees, IFAC World Congress, (2011).

[61] E. M. Wolff, U. Topcu and R. M. Murray, Robust con-
trol of uncertain markov decision processes with tem-

April 30, 2013 9:38 us12

Synthesis of Control Protocols for Autonomous Systems 19

poral logic specifications, Proc. of IEEE Conference
on Decision and Control , (2012).

[62] K. Chatterjee, L. Doyen, T. A. Henzinger and J.-
F. Raskin, Algorithms for omega-regular games with
imperfect information, Proceedings of the 20th in-
ternational conference on Computer Science Logic,
(Springer-Verlag, Berlin, Heidelberg, 2006), pp. 287–
302.

[63] T. Wongpiromsarn and E. Frazzoli, Control of proba-

bilistic systems under dynamic, partially known envi-
ronments with temporal logic specifications, Proc. of
IEEE Conference on Decision and Control , (2012).

[64] R. Dimitrova and B. Finkbeiner, Counterexample-
guided synthesis of observation predicates, FOR-
MATS , eds. M. Jurdzinski and D. Nickovic Lecture
Notes in Computer Science 7595, (Springer, 2012),
pp. 107–122.

