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Abstract— This paper presents a variant of standard fictitious
play called average strategy fictitious play (ASFP) for large-
scale repeated congestion games, where only a weighted running
average of all other players’ actions is assumed to be available to
each player. It reduces the burden of both information gathering
and information processing for each player. Compared to joint
strategy fictitious play (JSFP) studied in the literature, the
updating process of utility functions for each player is avoided.
We prove that there exists at least one pure strategy Nash
equilibrium for the congestion game under investigation, and
the players’ actions generated by ASFP with inertia (players’
reluctance to change their previous actions) converge to a
Nash equilibrium almost surely. The results are applied in
road pricing design to achieve socially beneficial trip timing.
Simulation results are provided based on the real traffic data
for the Singapore case study.

I. INTRODUCTION

Game theory deals with strategic interactions among mul-

tiple players, where each player tries to maximize his or her

own utility [1], [2]. It is applied in a broad array of areas

including economics, social science, engineering, etc. For

any non-trivial game, the utility of each player depends on

choices or actions of at least one other player and generally

of all the players. Nash equilibrium, a fundamental concept

in the realm of noncooperative game theory, is defined as the

action profile of all players where none of the players can

improve his or her utility by a unilateral move. It essentially

characterizes the user optimal situation, where the utility

function of every myopic player reaches a local optimum.

In this paper, we consider repeated games where in each

stage, the players are allowed to choose their actions based

on the available information. Generally, players need to

learn the underlying structure of the game by observing the

decisions made by other players, especially when players

have only limited or even no knowledge of their opponents’

utilities. Fictitious play and its variants are classical learning

processes studied extensively in the literature. In a standard

fictitious play, each player computes the empirical frequen-

cies of the observed decisions and assumes that all other
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players make decisions independently according to those

empirical frequencies [3]. Several counterexamples show

that fictitious play needs not converge [4], [5]. However,

it has been proved by using a Lyapunov stability approach

that convergence is possible under some non-singularity

conditions if we have either a zero-sum game, an identical

interest game, or a two-player/two-move game [6]. It is also

known that the empirical frequencies generated by fictitious

play of a potential game converge to a mixed strategy

Nash equilibrium [7]. One obvious shortcoming of fictitious

play is that when the number of players is large, it is

computationally infeasible to obtain the best response for

each player, since the best response of a player depends on

a mapping over a joint action space of other players. See

Section II for more details.

As a variant of fictitious play, a joint strategy fictitious

play (JSFP) alleviates the informational and computational

burden of standard fictitious play by introducing a utility

updating process for each player [3], [8]. Different from

standard fictitious play, in JSFP, each player assumes that all

other players make decisions jointly according to their joint

empirical frequencies. Also see Section II for more details.

In the case of JSFP with inertia, the convergence to a pure

strategy Nash equilibrium is established for all generalized

ordinal potential games [8].

The contributions of this paper can be summarized as

follows. First of all, we present a new variant of fictitious

play called average strategy fictitious play (ASFP) and prove

its convergence for a congestion game under some reasonable

assumptions. Note that the computational burden of each

player in JSFP mainly comes from the utility updating

process and increases with the number of possible actions.

ASFP proposed in this paper reduces the computational

burden of JSFP by getting rid of the above utility updating

process. In ASFP, each player only obtains a weighted

running average of all other players’ actions and assumes

that the total number of other players choosing one action is

equal to the weighted running average corresponding to this

action.

Secondly, we apply the results to the road pricing prob-

lem. The road pricing system is typically implemented for

affecting motorists’ route choices [9], [10] and trip timing

choices [11], [12]. In particular, road pricing for socially

beneficial trip timing is the motivating example of this paper.

We formulate the trip timing problem as a congestion game.

Congestion game as a special case of potential game was

first introduced in [13], where a collection of homogeneous

agents have to choose from a finite set of alternatives and the

payoff of a player depends on the number of players choosing



each alternative. Different from [13], players’ utilities are

heterogeneous in this paper.

The remainder of the paper is organized as follows.

Section II summarizes a series of notations to be used and

some pertinent work to this paper. A repeated congestion

game is formulated in Section III, where the structure of

ASFP is also introduced. In Section IV, we first establish the

existence of pure strategy Nash equilibria for the congestion

game under investigation, and then show the convergence

of ASFP with inertia to a pure strategy Nash equilibrium.

In Section V, the results are applied in the design of road

pricing scheme, and simulations based on the real traffic data

in Singapore are also included. Finally, Section VI concludes

the paper and discusses future work.

II. NOTATIONS AND RELATED WORK

Consider a repeated finite N -player game with the set of

players N := {1, 2, . . . , N} over consecutive stages t =
0, 1, 2, . . . . For any i ∈ N , −i denotes the complementary

set N\{i}. The action of player i at stage t is denoted by

xi(t) ∈ Xi, and Xi is the action set. For the rest of the

paper, the argument t may be omitted when no confusion is

caused. Let x = (xi, x−i) represent the action profile of all

the players. The utility received by player i is denoted by

Ui(xi, x−i) or simply Ui(x).
The definition of potential game is given as follows [7].

Note that if a game admits a potential function, then all

players tend to jointly optimize the potential function.

Definition 2.1: A finite N -player game with utility func-

tions U1(x), U2(x), . . . , UN (x) is called a potential game if

there exists a potential function Φ(x) such that for every i,

Ui(x
1
i , x−i)− Ui(x

2
i , x−i) = Φ(x1

i , x−i)− Φ(x2
i , x−i) (1)

for all possible x1
i ∈ Xi, x

2
i ∈ Xi, x−i ∈ X−i.

An N -tuple of action variable x∗ constitutes a (pure

strategy) Nash equilibrium [2], if for all possible i, xi,

Ui(x
∗
i , x

∗
−i) ≥ Ui(xi, x

∗
−i). (2)

It is well known that every potential game has at least one

pure strategy Nash equilibrium, since a global maximum

point of the potential function is obviously one Nash equi-

librium [7].

Standard fictitious play is an iterative learning process

incorporating the empirical frequencies of opponents’ actions

without assuming any information of other players’ utilities

[3]. Denote f x̂i
i (t) = 1

t

∑t−1
s=0 I{xi(s) = x̂i} as the empirical

frequency of player i choosing action x̂i ∈ Xi up to stage

t − 1. Here I{·} is the indicator function. Every player

assumes that other players make decisions randomly and

independently according to those empirical frequencies, then

the expected utility for player i choosing x̂i ∈ Xi is

Ūi(x̂i, f−i(t)) =
∑

x̂−i∈X−i

U(x̂i, x̂−i)
∏

j∈−i

f
x̂j

j (t). (3)

Let every player select an action that maximizes the expected

utility (3) at every stage, then the empirical frequencies gen-

erated by fictitious play converge to a mixed strategy Nash

equilibrium in all potential games [7]. However, fictitious

play is computationally infeasible for large-scale games,

since choosing an action for player i at every stage depends

on a mapping over a joint space X−i.

In JSFP, the empirical frequencies of the joint actions of

other players, defined as g
x̂−i

−i (t) = 1
t

∑t−1
s=0 I{x−i(s) =

x̂−i}, are tracked by player i. Every player assumes that

other players make decisions randomly and jointly according

to the above empirical frequencies. The expected utility for

player i choosing x̂i ∈ Xi becomes

Ūi(x̂i, g−i(t)) =
∑

x̂−i∈X−i

U(x̂i, x̂−i)g
x̂−i

−i . (4)

It turns out that the expected utility in JSFP can be calculated

recursively as [8]

Ūi(x̂i, g−i(t+ 1))

=
t

t+ 1
Ūi(x̂i, g−i(t)) +

1

t+ 1
Ui(x̂i, x−i(t)).

(5)

Thus, JSFP reduces the computational burden of standard

fictitious play. The convergence of JSFP is also addressed

for all generalized ordinal potential games in [8]. Next,

we introduce ASFP that further reduces the computational

burden of JSFP by getting rid of the utility updating process

(5).

III. ASFP SETUP

We consider a congestion game where the action of

player i at stage t is chosen from a finite collection of

common resources R := {r1, r2, . . . , rM}. For the ease of

the presentation, we limit our attention to a single choice

case, i.e., the cardinality of xi(t) ∈ R is 1. However, the

results presented here can be further extended to a multiple

choices case. It is assumed that the utility received by player

i can be divided into two parts as

Ui(xi, x−i) = V1i(xi) + V2(nxi(x)), (6)

where

nxi(x) =

N∑

j=1

I{xj = xi} (7)

is the number of players choosing resource xi. In (6), V1i(xi)
represents the fixed utility received by player i for using

resource xi, and V2(nxi(x)) denotes the utility part due to the

congestion of players using the same resource. Different from

the congestion game introduced in [13], players’ utilities are

heterogeneous in (6).

At the initial stage t = 0, every player picks up an action

arbitrarily from R. Then at any stage t ≥ 1, a system

supervisor records nrl(x(t − 1)) for all l = 1, 2, . . . ,M ,

and computes its weighted running average recursively as

n̄rl(0) = nrl(x(0)),

n̄rl(t) = (1− λ)n̄rl(t− 1) + λnrl(x(t− 1)),
(8)

where λ ∈ (0, 1] is a constant weight on the newest infor-

mation. In ASFP, the above weighted running average n̄rl(t)
is broadcasted by the system supervisor to every player at



the beginning of stage t ≥ 1. For player i ∈ N , it is easy to

obtain the following quantity

n̄−i
rl
(t) = n̄rl(t)− wi

rl
(t), (9)

where wi
rl
(0) = I{xi(0) = rl} and wi

rl
(t) = (1− λ)wi

rl
(t−

1) + λI{xi(t − 1) = rl}. Note that n̄−i
rl
(t) represents the

weighted running average of the number of players choosing

resource rl except for player i up to stage t−1. Furthermore,

in ASFP, every player i ∈ N makes a presumption that the

total number of other players choosing resource rl at stage

t is equal to the weighted running average n̄−i
rl
(t). In this

situation, the predicted utility for player i choosing x̂i ∈ R
at stage t is given by

Ūi(x̂i, n̄
−i(t)) = V1i(x̂i) + V2(n̄

−i
x̂i
(t) + 1), (10)

and the set of actions as the best response of player i is

defined as

BRi(n̄
−i(t))

:={x̃i ∈ R|Ūi(x̃i, n̄
−i(t)) = max

xi∈R
Ūi(xi, n̄

−i(t))}. (11)

Remark 3.1: Different from JSFP, the utility updating

process (5) is avoided in ASFP, and thus the burden for

information processing of each player is reduced especially

when the number of resources to be chosen from is large.
Next, given the best response set BRi(n̄

−i(t)) for every

player i at every stage t ≥ 1, we will study convergence of

ASFP.

IV. CONVERGENCE ANALYSIS OF ASFP

In this section, the convergence property of ASFP is

established via two steps. First, we will prove the existence of

a set of Nash Equilibria for the congestion game formulated

in Section III. After that, we will show that players’ actions

generated by ASFP with some kind of inertia converge to

one of Nash equilibria almost surely.

A. Existence of Pure Strategy Nash Equilibria
The following proposition shows that the congestion game

defined in Section III is a potential game; thus, it inherits the

desirable property of potential game regarding the existence

of a pure strategy Nash equilibrium.
Proposition 4.1: A congestion game with utility functions

given in (6) is a potential game with the potential function

Φ(x) =

N∑

j=1

V1j(xj) +

M∑

l=1

nrl
(x)∑

k=1

V2(k), (12)

and it has at least one pure strategy Nash equilibrium.
Proof: For the case: x1

i = x2
i , condition (1) obviously holds.

For the case: x1
i �= x2

i , we have

Φ(x1
i , x−i)− Φ(x2

i , x−i)

=
M∑

l=1

nrl
(x1

i ,x−i)∑

k=1

V2(k)−
M∑

l=1

nrl
(x2

i ,x−i)∑

k=1

V2(k)

+ V1i(x
1
i )− V1i(x

2
i )

=V2(nx1
i
(x1

i , x−i))− V2(nx2
i
(x2

i , x−i)) + V1i(x
1
i )− V1i(x

2
i )

=Ui(x
1
i , x−i)− Ui(x

2
i , x−i),

i.e., condition (1) is satisfied. The proof is completed since

every potential game has at least one pure strategy Nash

equilibrium [7].

B. Convergence of Players’ Learning Process

For the simplicity of the analysis, we make the following

assumption on the utility induced by congestion. Its validity

will be further justified in Section V on transportation

modeling.

Assumption 1: The utility part induced by congestion in

(6) is linear with respect to the number of players selecting

the same resource, i.e.,

V2(nxi(x)) = anxi(x) + b, (13)

where a, b are constant parameters.

Following the idea in [8], [14], some sort of inertia,

which plays an important role in the convergence analysis,

is introduced in players’ decision making process. In the

presence of inertia, player i ∈ N stays with the previous

action, i.e., xi(t) = xi(t− 1), if there is no opportunity for

utility improvement, i.e., xi(t−1) ∈ BRi(n̄
−i(t)); otherwise,

he or she chooses an action from the set BRi(n̄
−i(t)) with

probability ξi(t) and still stays with the previous action

with probability 1− ξi(t). The absorption property of Nash

equilibria in ASFP with inertia is shown in the following

proposition.

Proposition 4.2: Consider a congestion game with utility

functions given in (6). Under Assumption 1, if the action

profile x(t) of all players generated by ASFP with inertia

is a pure strategy Nash equilibrium at stage t, and xi(t) ∈
BRi(n̄

−i(t)) for every i ∈ N , then x(t + τ) = x(t) for all

τ > 0.

Proof: First note that

nx̂i(x̂i, x−i(t)) = nx̂i(x(t))− I{xi(t) = x̂i}+ 1. (14)

After substituting (8) into (9), we have

n̄−i
rl
(0) =nrl(x(0))− I{xi(0) = rl},

n̄−i
rl
(t) =(1− λ)n̄−i

rl
(t− 1)

+ λ(nrl(x(t− 1))− I{xi(t− 1) = rl}).
(15)

It follows that

Ūi(x̂i, n̄
−i(t+ 1))

= V1i(x̂i) + V2(n̄
−i
x̂i
(t+ 1) + 1)

= a{(1− λ)n̄−i
rl
(t) + λ(nrl(x(t))− I{xi(t) = rl})}

+a+ b+ V1i(x̂i)

= (1− λ)Ūi(x̂i, n̄
−i(t)) + λUi(x̂i, x−i(t)). (16)

Based on the condition xi(t) ∈ BRi(n̄
−i(t)), we have for

all x̂i,

Ūi(xi(t), n̄
−i(t)) ≥ Ūi(x̂i, n̄

−i(t)). (17)

In addition, x(t) is a pure strategy Nash equilibrium, there-

fore for all x̂i,

Ui(xi(t), x−i(t)) ≥ Ui(x̂i, x−i(t)). (18)



It follows from (16) that for all x̂i,

Ūi(xi(t), n̄
−i(t+ 1)) ≥ Ūi(x̂i, n̄

−i(t+ 1)), (19)

i.e., xi(t) ∈ BRi(n̄
−i(t+1)). Then we can obtain that x(t+

1) = x(t) based on players’ inertia. The rest of the proof

follows by induction.

Two technical assumptions are essential to convergence

analysis of ASFP: one on players’ willingness to optimize the

predicted utility, and the other on players’ difference between

any two distinct strategies.

Assumption 2: For every player i ∈ N and for every stage

t ≥ 1, there exist constants δ1 and δ2 such that

0 < δ1 ≤ ξi(t) ≤ δ2 < 1. (20)

Assumption 3: For every player i ∈ N ,

Ui(x
1
i , x−i) �= Ui(x

2
i , x−i) (21)

for all possible x1
i , x

2
i , x−i.

As the main result of this paper, the convergence property

of ASFP is provided in the next theorem.

Theorem 4.1: Consider a congestion game with utility

functions given in (6). Under Assumptions 1, 2 and 3, the

action profile of all players generated by ASFP with inertia

is convergent to a pure strategy Nash equilibrium.

Proof: According to (16), if x(t) is repeated T times, i.e.,

x(t) = x(t+ 1) = · · · = x(t+ T − 1), then

Ūi(x̂i, n̄
−i(t+ T − 1)) =(1− λ)T−1Ūi(x̂i, n̄

−i(t))

+ (1− (1− λ)T−1)Ui(x̂i, x−i(t)).

For λ ∈ (0, 1], there exists a sufficiently large T independent

of t such that BRi(n̄
−i(t+ T − 1)) = BRi(x−i(t)), where

BRi(x−i(t)) is defined as the best response of player i with

respect to the action profile of other players x−i(t), i.e.,

BRi(x−i(t))

:={x̃i ∈ R|Ui(x̃i, x−i(t)) = max
xi∈R

Ui(xi, x−i(t))}. (22)

Note that the probability of the above event is at least

(1− δ2)
N(T−1), and under Assumption 3 the cardinality of

BRi(x−i(t)) is 1. If x(t) is a pure strategy Nash equilib-

rium, then the proof is completed based on Proposition 4.2.

Otherwise, there exists at least one player j such that

Uj(xj(t), x−j(t)) < Uj(x̂j , x−j(t)). If player j switches its

action to x̂j and all other players stay with their previous

actions, i.e., x(t+T ) = (x̂j , x−j(t)), and x(t+T ) is repeated

T times, then BRi(n̄
−i(t + 2T − 1)) = BRi(x−i(t + T ))

for a sufficiently large T . The corresponding probability is

at least δ1(1 − δ2)
NT−1. According to Proposition 4.1, we

have Φ(x(t)) < Φ(x(t + T )). Again, if x(t + T ) is a pure

strategy Nash equilibrium, we are done. Otherwise, we can

continue the above argument and construct a sequence of

action profiles as x(t), x(t+ T ), . . . , x(t+KT ) such that

Φ(x(t)) < Φ(x(t+ T )) < · · · < Φ(x(t+KT )). (23)

Note that the cardinality of the decision space of all play-

ers is MN , which is finite. In addition, there always exists at

least one pure strategy Nash equilibrium for the underlying

congestion game. Therefore, there exists a finite K < MN

such that x(t + KT ) is a pure strategy Nash equilibrium.

In summary, we can conclude that x(t + KT ) is a pure

strategy Nash equilibrium with K < MN and with a positive

probability at least (1−δ2)
N(T−1){δ1(1−δ2)

NT−1}K , which

implies that x(t) generated by ASFP with inertia converges

to a pure strategy Nash equilibrium almost surely.

Remark 4.1: As we can see from the proof of Theo-

rem 4.1, if there are multiple Nash equilibria for the un-

derlying game, then the action profile may converge to a

pure strategy Nash equilibrium corresponding to only a local

maximum point of the potential function. Note that this kind

of phenomenon also motivates research work on inefficiency

of equilibria [15], which can be one of our future directions.

V. APPLICATION OF ASFP TO ROAD PRICING

Consider the case where a group of people travel along

one road during a given period (e.g., 7:30am-9:30am) on a

daily basis.

A. Trip Timing without Road Price

For the problem of trip timing, a collection of time

intervals is considered as the set of resources to be chosen by

every road user. Without road price, each driver decides his

or her departure time by taking the average travel speed and

his or her own preferred departure time into account. Suppose

that nri(x) is the number of vehicles on the road choosing

departure time interval ri and the length of the road is L.

A common assumption in the area of transportation theory

is that the average travel speed is a linear function of traffic

density, i.e., nri(x)/L; see, e.g., [16], [17]. In this case, we

set the utility parts V1i, V2 in (6) as

V1i(xi) = αi|xi − T̂i|, (24)

V2(nxi(x)) = anxi(x) + b, (25)

where T̂i is the preferred departure time of driver i, and

αi, a, b are constant parameters. Note that |xi − T̂i| is the

time difference between actual and preferred departure time,

and αi ≤ 0 may be different for different road user. In

addition, since the average travel speed is always decreasing

with respect to the number of vehicles on the road, we have

a < 0.

In general, the road manager (i.e., the system supervisor)

monitors the traffic flows in the traffic system, and thus the

weighted running average defined in (8) can be computed

by the road manager. The weighted running average actually

describes the crowdedness of the road during each time

interval based on the historical traffic situation. Suppose that

the road manager broadcasts (8) to every driver. Then, the

above trip timing problem fits within the congestion game

formulated in Section III. Moreover, if every driver generates

his or her action based on ASFP with inertia, then the

convergence of the action profile of all drivers is ensured

under the conditions of Theorem 4.1.



B. Trip Timing under Dynamic Road Pricing

Assume that the road price determined by the road man-

ager is applied to achieve some kind of social goal and it

is charged when the driver enters the road. We consider the

case where the road price is a function of the number of

vehicles on the road and the utility function (6) is modified

into

Ui(xi, x−i) = V1i(xi) + V2(nxi
(x)) + cp(nxi

(x)), (26)

where p(nxi(x)) is the road price to be designed, and c <
0 is an additional parameter. We can derive the following

result.

Theorem 5.1: If the road price is set according to

p(k) =
a

c
(k − 1), (27)

then the congestion game with utility functions given in (26)

is a potential game with the potential function

Φ̃(x) =
N∑

j=1

{V1j(xj) + V2(nxj (x))}. (28)

Proof: For Φ̃(x) in (28) and x1
i �= x2

i , we have

Φ̃(x1
i , x−i)− Φ̃(x2

i , x−i)

=V1i(x
1
i ) + nx1

i
(x1

i , x−i)[anx1
i
(x1

i , x−i) + b]

+ nx2
i
(x1

i , x−i)[anx2
i
(x1

i , x−i) + b]

− V1i(x
2
i )− [nx2

i
(x1

i , x−i) + 1][anx2
i
(x1

i , x−i) + a+ b]

− [nx1
i
(x1

i , x−i)− 1][anx1
i
(x1

i , x−i)− a+ b]

=V1i(x
1
i )− V1i(x

2
i ) + 2a[nx1

i
(x1

i , x−i)− nx2
i
(x1

i , x−i)− 1].

Note that

nx2
i
(x2

i , x−i) = nx2
i
(x1

i , x−i) + 1. (29)

Based on (26) and (27), we can obtain that for x1
i �= x2

i ,

Ui(x
1
i , x−i)− Ui(x

2
i , x−i)

=V1i(x
1
i ) + anx1

i
(x1

i , x−i) + b+ cp(nx1
i
(x1

i , x−i))

− V1i(x
2
i )− anx2

i
(x2

i , x−i)− b− cp(nx2
i
(x2

i , x−i))

=V1i(x
1
i )− V1i(x

2
i ) + 2a[nx1

i
(x1

i , x−i)− nx2
i
(x1

i , x−i)− 1]

=Φ̃(x1
i , x−i)− Φ̃(x2

i , x−i).

The rest of the proof follows similarly to Proposition 4.1.

Note that the pricing scheme given in (27) is dynamic.

In addition, Φ̃(x) in (28) represents the overall utility of

all road users in the absence of road price, and thus Φ̃(x)
can be considered as a social welfare to be maximized by

the system supervisor. According to Remark 4.1, the action

profile generated by ASFP with inertia may converge to

a local maximum point of Φ̃. However, starting from the

same set of initial conditions, the proposed pricing strategy

can always improve the overall utility compared to the case

without road pricing; see next subsection for a case study of

Singapore.

Fig. 1. The map of Church street, Singapore.

C. Case Study of Singapore

We take Church street, Singapore (Fig. 1) as an exam-

ple. Land Transport Authority (LTA) of Singapore and the

Comfort Taxi company provide us with loop counts and

comfort taxi data for the month of August 2010, respectively.

The loop counts record the number of vehicles passing

through all inductive loop detectors, and the comfort taxi

data contain the information on the changing of Taxies’ GPS

location with respect to time. The average travel speed can

be computed based on the comfort taxi data, and the traffic

flow is given by the loop counts. Then, the traffic density

can be calculated as the ratio of traffic flow to average travel

speed. The relationship between average travel speed and

traffic density for Church street is plotted in Fig. 2, which is

approximately linear. The length of Church street is about 0.3
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Fig. 2. The relationship between average travel speed and traffic density
for Church street, Singapore.

kilometer, then we can derive a = −0.798 km/h/vehicle, b =
48.835 km/h in (25).

Suppose that there are 200 road users using Church street

from 7:30am to 9:30am everyday. In the simulation, the value

of αi, i = 1, 2, . . . , 500, is randomly generated according to

a uniform distribution within the interval [−150,−50], while

T̂i, i = 1, 2, . . . , 500, is randomly generated according to a

triangular distribution within the interval [7:30am, 9:30am]

and with a peak at 8am. In practice, the distribution of αi and

T̂i may be determined via household survey, which is out of



the scope of this paper. We divide the time horizon [7:30am,

9:30am] into 8 non-overlapping intervals, i.e., M = 8. Each

interval has a length of 0.25 hour.

We first consider the case without road price. As we can

see from Fig. 3, the action profile of all players generated by

ASFP with inertia is convergent, and we can further check

that the convergent point is a pure strategy Nash equilibrium.

For the case with pricing scheme in (27), the action profile of
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Fig. 3. Number of vehicles in each departure time interval without road
price over day t = 0, 1, 2, . . . .

all players generated by ASFP with inertia is still convergent

to a pure strategy Nash equilibrium as shown in Fig. 4.

Starting from the same set of initial conditions, the overall

utility for the case without road price is Φ̃(x) = 3565.2 and

for the case with pricing scheme (27) is Φ̃(x) = 3642.9. It

can be observed that the proposed pricing strategy improves

the overall utility of all players. By comparing Fig. 3 with

Fig. 4, we can see that the proposed road pricing scheme

actually shifts a portion of people from relatively more

congested time intervals to less congested ones.
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Fig. 4. Number of vehicles in each departure time interval under pricing
scheme (27) over day t = 0, 1, 2, . . . .

VI. CONCLUSIONS

In this paper, the so-called average strategy fictitious

play has been introduced for large-scale repeated congestion

games. It avoids the utility updating process in joint strategy

fictitious play studied in [8]. The convergence property of

ASFP with inertia has been established, and the results

have been applied in road pricing design to achieve socially

beneficial trip timing. Note that a generalization of the results

in this paper to the case without broadcasting of system su-

pervisor is considered in [18] by using distributed consensus.

Future work includes the relaxation of linearity assumption

on the utility induced by congestion, the conditions for

the uniqueness of Nash equilibrium, and other forms of

broadcasted information, e.g., coordinated actions/signals.
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